
wlcsim Documentation
Release 0.1.8+0.g2b5f727.dirty

Andrew Spakowitz, Bruno Beltran, Sarah Sandholtz, Quinn MacPherson, Shifan Mao, Elena Koslover

Oct 27, 2020

Contents

1 What is wlcsim? 3

2 Setting up a Fortran simulation 5

3 Running the Fortran code 7

4 Output 9

5 Disclaimer 11
5.1 wlcsim Python Module . 11
5.2 wlcsim Fortran Codebase Structure . 30
5.3 Fortran Simulation Features . 34
5.4 Fortran Simulation Output . 37
5.5 About Parallel Tempering . 38
5.6 Tips . 39
5.7 Meiotic Homolog Pairing . 40
5.8 Example plots for Frank Elastic Constants . 51

6 Indices and tables 57

Python Module Index 59

Index 61

i

ii

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Contents 1

https://travis-ci.com/SpakowitzLab/wlcsim
https://wlcsim.readthedocs.io/en/latest/?badge=latest

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

2 Contents

CHAPTER 1

What is wlcsim?

A project started by the Spakowitz lab for carrying out various polymer physics calculations, especially multi-scale,
coarse-grained simulation and theory relating to semiflexible polymers. The library has been applied largely to simu-
late DNA, and to compare results from polymer field theory to measurements of biological polymer systems, but our
universal coarse graining procedure and our field theoretic results should be broadly applicable to any semiflexible
polymer system.

For example, combining our coarse graining procedure with field theoretic simulations, we were able to simulate the
phase segregation of an entire chromosome due to H3K9 methylation.

There are two largely independent codebases that are each called wlcsim. One is a Fortran program that implements
our universal coarse graining procedure to allow Monte Carlo and Brownian dynamics simulations of semiflexible
polymers with high discretization lengths (i.e. with a very small number of beads). The Monte Carlo routines in this
codebase are highly optimized, and integrated with our field theoretic simulations. For details see wlcsim Fortran
Codebase Structure.

There is an associated Python package, wlcsim, which can be used to help process the output of our Fortran code,
but also contains much easier to use Monte Carlo and Brownian dynamics routines. For more details on this package,
see the wlcsim Python Module docs.

The remainder of this section focusus on the FORTRAN code. The features of this codebase are described in Fortran
Simulation Features.

3

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.013304
https://pubs.acs.org/doi/abs/10.1021/acs.macromol.5b02639
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.067802
https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.7b00638
https://pubs.rsc.org/ko/content/articlelanding/2017/sm/c7sm00164a/unauth#!divAbstract
https://www.pnas.org/content/115/50/12739

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

4 Chapter 1. What is wlcsim?

CHAPTER 2

Setting up a Fortran simulation

To define the system you would like to simulate, set the approparte values src/defines.inc. Discriptions of each
parameter are found along with their definitions in src/defines.inc. In pracatice, the best approach is often to
start from examples provided in input/example_defines/.

Some parameters that MUST be set are given default values that prevent the code from compiling. This is on purpose
so that the code is not accidentally run with something arbitrary for these values (like the length of the chain, the
persistence length, etc).

For tips on setting up and running simulations see Tips.

5

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

6 Chapter 2. Setting up a Fortran simulation

CHAPTER 3

Running the Fortran code

Simply typing make in the top level directory will build the simulator from source. The executable created (wlcsim.
exe) will data from the input/ directoyr and write its output to the data directory. To force a rerun without having
to manually delete all the old output files, you can also simply type make run at any time.

By default, specifying multiple polymers just simulates them in parallel in the same reaction volume, no interactions
are assumed.

To scan parameters, the Python script scan_wlcsim.py should be used. It takes care of saving the current git
commit_hash, all inputs, etc. into a unique directory, and preventing race conditions even on shared filesystems,
among other things.

To perform parallel tempering using MPI for multiprocessing using 10 threads first compile using make then type
mpirun -np 10 wlcsim.exe. For more details on parallel tempering see About Parallel Tempering.

7

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

8 Chapter 3. Running the Fortran code

CHAPTER 4

Output

There are several ways to easily visualize simulation output. There are PyMol scripts in the vizualization
directory, python -m wlcsim.plot_wlcsim from the repo’s top level directory will launch a GUI designed to
visualize BD simulations, and one can of course simply use the output in the data directory, which contains rank two
arrays of shape num_beads*num_polymers-by-3, with one file per time point.

For more details see Fortran Simulation Output.

9

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

10 Chapter 4. Output

CHAPTER 5

Disclaimer

This codebase is internal to the Spakowitz lab and is not guaranteed to be bug-free at any point. For battle-tested
versions of our software, please see the links in the relevant papers.

Contents:

5.1 wlcsim Python Module

Compute results related to (twistable, stretchable, shearable) wormlike chains.

This package can be largely separated into

1. Modules for processing simulation output from our FORTRAN codebase (wlcsim.data, wlcsim.input) 2.
Modules for generating polymer chains at equilibrium (both directly in wlcsim.chains and using Monte Carlo
wlcsim.mc). 3. Modules for simulating diffusing polymers (wlcsim.bd). 4. Modules for plotting these various
chains and their properties (wlcsim.plot and wlcsim.plot_wlcsim).

5.1.1 wlcsim.bd

wlcsim.bd.rouse

Simulate Rouse polymers.

Notes

There are various ways to parameterize Rouse polymers. In this module, we use the convention that N is the number
of beads of a Rouse polymer (contrary to e.g. Doi & Edwards, where N is the number of Kuhn lengths in the polymer).
We instead use Nhat for the number of Kuhn lengths in the polymer.

D is the “diffusivity of a Kuhn length”, i.e. kbT/xi, where xi is the dynamic viscosity of the medium in question, as
typically found in the Langevin equation for a Rouse polymer

11

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

𝜉
𝑑

𝑑𝑡
�⃗�(𝑛, 𝑡) = 𝑘

𝑑2

𝑑𝑛2
�⃗�(𝑛, 𝑡) + 𝑓 (𝐵)

This means that to simulate a Rouse polymer diffusing in a medium with viscosity xi, the diffusion coefficient of each
bead should be set to Dhat = D (N/Nhat). Since 𝜉 is in units of “viscosity per Kuhn length” and (N/Nhat) is in units of
“number of beads over number of Kuhn lengths”, this can be thought of as changing units from “viscosity per Kuhn
length” to “viscosity per bead”.

Some books use b for the mean (squared) bond length between beads in the discrete gaussian chain. We instead use
b to be the real Kuhn length of the polymer, so that the mean squared bond length bhat**2 is instead given by L0*b,
where L0 is L0 = L/(N-1) is the amount of polymer “length” represented by the space between two beads.

The units chosen here make the most sense if you don’t actually consider the polymer to be a “real” Rouse polymer,
but instead an e.g. semiflexible chain with a real “length” whose long distance statistics are being captured by the
simulation.

To compare these results to the rouse.analytical.rouse module, use

>>> plt.plot(t_save, sim_msd)
>>> plt.plot(t_save, wlcsim.analytical.rouse.rouse_mid_msd(t_save, b, Nhat, D,
... num_modes=int(N/2)))
>>> plt.plot(t_save, 6*Dhat*t_save)
>>> plt.plot(t_save, 6*(Dhat/N)*t_save) # or 6*(D/Nhat)*t_save
>>> # constant prefactor determined empirically...
>>> # no, using the value of 6*(Dhat/N)*t_R doesn't work...
>>> plt.plot(t_save, 1.9544100*b*np.sqrt(D)*np.sqrt(t_save))

where cutting off the number of modes corresponds to ensuring that the rouse behavior only continues down to the
length scale of a single “bead”, thus matching the simulation at arbitrarily short time scales. (Notice that we abide by
the warning above. Our Nhat is wlcsim.analytical.rouse’s N).

Example

For example, if you want to simulate a megabase of DNA, which has a real linear length of about 1e6 megabase/base
* 0.33 nm/base ~ 3e5 nm, and a Kuhn length of 1e2 nm, then

wlcsim.bd.rouse.jit_confined_srk1
Add an elliptical confinement.

Energy is like cubed of distance outside of ellipsoid, pointing normally back in. times some factor Aex control-
ling its strength.

wlcsim.bd.rouse.jit_confinement_clean
Unfortunately, by “cleaning up” this function, we also make it 2x slower.

#worthit

wlcsim.bd.rouse.jit_srk1
Faster version of wlcsim.bd.rouse.rouse using jit.

N=101,L=100,b=1,D=1 takes about 3.5min to run when t=np.linspace(0, 1e5, 1e7+1) adding
t_save does not slow function down

Our srk1 scheme is accurate as long as ∆𝑡 is less than the transition time where the MSD goes from high k
behavior (𝑡1) to Rouse behavior (𝑡1/2). This is exactly the time required to diffuse a Kuhn length, so we just
need ∆𝑡 < �̂�2

6�̂�
in 3D. the “crossover” from fast-k to rouse-like behavior takes about one order of magnitude in

time, but adding more than that doesn’t seem to make the MSD any more accurate, so we suggest setting ∆𝑡 to
one tenth of the bound above.

12 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

the number of orders of magnitude of “rouse” scaling the simulation will capture is exactly dictated by the ratio
between this time scale and the rouse relaxation time (so like N**2?)

recall (doi & edwards, eq 4.25) that the first mode’s relaxation time is 𝜏1 = 𝜉𝑁2

𝑘𝜋2 . and the 𝑝th mode is 𝜏𝑝 = 𝜏1/𝑝
2

(this is the exponential falloff rate of the 𝑝th mode’s correlation function).

wlcsim.bd.rouse.measured_D_to_rouse(Dapp, d, N, bhat=None, regime=’rouse’)
Get the full-polymer diffusion coefficient from the “apparent” D.

In general, a discrete Rouse polymer’s MSD will have three regimes. On time scales long enough that the whole
polymer diffuses as a large effective particle, the MSD is of the form 6𝐷/�̂�𝑡, where, as is true throughout this
module, 𝐷 is the diffusivity of a Kuhn length, and �̂� is the number of Kuhn lengths in the polymer.

This is true down to the full chain’s relaxation time (the relaxation time of the 0th Rouse mode, also known as
the “Rouse time”) 𝑡𝑅 = 𝑁2𝑏2/𝐷. For times shorter than this, the MSD will scale as 𝑡1/2. Imposing continuity
of the MSD, this means that the MSD will behave as 𝜅0𝐷/�̂�(𝑡𝑅𝑡)

1/2, where 𝜅0 is a constant that I’m too lazy
to compute using lim𝑡→0 of the analytical Rouse MSD result, so I just determine it empirically. We rewrite this
MSD as 𝜅𝑏𝐷−1/2𝑡1/2, and find by comparing to the analytical Rouse theory that 𝜅 = 1.9544100(4).

Eventually (at extremely short times), most “real” polymers will eventually revert to a MSD that scales as 𝑡1.
This cross-over time/length scale defines a “number of segments” �̃� , where the diffusivity of a segment of
length �̃� = 𝐿/(�̃� − 1) matches the time it takes stress to propagate a distance �̃� along the polymer. Said in
other words, for polymer lengths smaller than �̃�, the diffusivity of the segment outruns the stress communication
time between two neighboring segments.

The diffusivity at these extremely short times will look like 6𝐷(�̃�/�̂�)𝑡. In order to simulate this behavior
exactly, one can simply use a polymer with �̃� beads, then all three length scales of the MSD behavior will
match.

This three-regime MSD behavior can be very easily visualized in log-log space, where it is simply the continu-
ous function defined by the following three lines. From shortest to longest time scales, log 𝑡 + log 6𝐷(�̃�/�̂�),
(1/2) log 𝑡 + log 𝜅𝑏𝐷1/2, and log 𝑡 + log 6𝐷�̂� . The lines (in log-log space), have slopes 1, 1/2, and 1, respec-
tively, and their “offsets” (y-intercept terms with the log removed) are typically referred to as 𝐷app.

The simulations in this module use the diffusivity of a single Kuhn length as input (i.e. plain old 𝐷 is expected
as input) but typically, measurements of diffusing polymers are done below the Rouse time, and for long enough
polymers (like a mammalian chromosome), it may be difficult to impossible to measure unconfined diffusion at
time scales beyond the Rouse time. This means you often can’t just look at the diffusivity of the whole polymer
and multiply by �̂� to get the diffusivity of a Kuhn length. And since there’s not really a principled way in
general to guess �̃� , you usually can’t use the short-time behavior to get 𝐷 either, even supposing you manage to
measure short enough times to see the cross-over back to 𝑡1 scaling. This means that usually the only way one
can extract 𝐷 is by measuring 𝐷app, since we can use the fact that 𝐷app = 𝜅𝑏𝐷1/2 (the 𝜅 value quoted above
only works for 3-d motion. I haven’t bothered to check if it scales linearly with the number of dimensions or
like

√
𝑑 for 𝑑-dimensional motion, but this shouldn’t be too hard if you are interested).

In short, this function gives you 𝐷 given 𝐷app.

Parameters

• D_app (float) – The measured 𝐷app𝑏𝑎𝑠𝑒𝑑𝑜𝑛𝑡ℎ𝑒𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑜𝑓𝑡ℎ𝑒𝑀𝑆𝐷𝑖𝑛𝑙𝑜𝑔 −
𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒.𝑇ℎ𝑖𝑠𝑐𝑎𝑛𝑏𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑎𝑠, assuming that t is purely in the regime where the MSD
scales like 𝑡1/2.

• Nhat (int) – number of beads in the polymer

• d (int) – number of dimensions of the diffusion (e.g. 3 in 3-d space)

Returns D_rouse – the diffusivity of a Kuhn length of the polymer

Return type float

5.1. wlcsim Python Module 13

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Notes

What follows is an alternate way of “thinking” about the three regimes of the MSD, from a simulation-centric
perspective, that I typed up back when I first wrote this function, but has been obsoleted by the description at
the start of this docstring.

In general, a discrete Rouse polymer’s MSD will have three regimes. On time scales short enough that chain
connectivity is not relevant, the MSD is of the form 6�̂�𝑡.

As soon as chain connectivity begins to affect the dynamics, the form of the MSD will change to 𝜅�̂��̂�1/2𝑡1/2,
where we have determined the constant 𝜅 empirically (using our exact analytical theory) to be approximately
1.9544100(4). Note that (up to a constant factor), this is just 6�̂�(𝑡𝑅𝑡)

1/2, where 𝑡𝑅 is the relaxation time (aka
Rouse time) of the polymer, given by �̂�2�̃�2/�̂�.

This is because the Rouse behavior only continues up to the relaxation time 𝑡 = 𝑡𝑅, where the MSD transitions
into the form 6 �̂�

�̃�
𝑡. If you ask what “line” with slope 1/2 in log-log space intersects 6 �̂�

�̃�
𝑡 at 𝑡 = 𝑡𝑅, you get the

above form for the sub-Rouse time MSD.

Here, �̃� is distinguished from 𝑁 only as a formality. For a simulation of a discrete Rouse polymer with a
fixed number of beads, 𝑁 = �̃� is exactly the number of beads. For a “real” polymer, it is simply a numerical
parameter that describes how long the Rouse behavior lasts (in the limiit of short times). For a “true” Rouse
polymer (the fractal object) N is infinity and there is no time scale on which the MSD transitions back into 𝑡1

behavior. But, for any real polymer, this will “almost always” eventually happen.

wlcsim.bd.rouse.recommended_dt(N, L, b, D)
Recommended “dt” for use with rouse*jit family of functions.

Currently set to 1
10

𝑏2

6𝐷 .

See the jit_srk1() docstring for source of this time scale.

wlcsim.bd.rouse.with_integrator(N, L, b, D, t, x0=None, integrator=<function
rk4_thermal_lena>)

Simulate a Rouse polymer made of N beads free in solution.

Parameters

• N (float) – Number of beads in the chain.

• L (float) – Length of chain.

• b (float) – Kuhn length of the chain (same units as L).

• D (float) – Diffusion coefficient. (Units of length**2/time). In order to compute D
from a single-locus MSD, use measured_D_to_rouse.

• t ((Nt,) array_like of float) – Time points to use for stepping the integrator.
None of our current integrators is currently capable of taking time steps larger than the time
scale of the highest Rouse mode of the finite chain (use ~.bd.recommended_dt to compute
the optimal dt).

• x0 ((N, 3) array_like of float, optional) – The initial locations of each
bead. If not specified, defaults to initializing from the free-draining equilibrium, with the
first bead at the origin.

• integrator (Callable[[ForceFunc, float, Times, Positions],
Positions]) – Either ~.runge_kutta.rk4_thermal_lena or ~.runge_kutta.srk1_roberts

Returns The positions of the N beads at each of the Nt time points.

Return type (Nt, N, 3) array_like of float

14 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Notes

The polymer beads can be described by the discrete Rouse equations

𝜉
𝑑𝑥(𝑖, 𝑡)

𝑑𝑡
= −𝑘(𝑥(𝑖, 𝑡) − 𝑥(𝑖 + 1, 𝑡)) − 𝑘(𝑥(𝑖, 𝑡) − 𝑥(𝑖− 1, 𝑡)) + 𝑅(𝑡)

where 𝜉 = 𝑘𝐵𝑇/𝐷, 𝑘 = 3𝑘𝐵𝑇/𝑏
2, 𝑏 is the Kuhn length of the polymer, 𝐷 is the self-diffusion coefficient

of a bead, and 𝑅(𝑡)/𝜉 is a delta-correlated stationary Gaussian process with mean zero and ⟨𝑅(𝑡)𝑅(𝑡′)/𝜉2⟩ =
2𝐷𝐼𝛿(𝑡− 𝑡′).

Notice that in practice, 𝑘/𝜉 = 3𝐷/𝑏2, so we do not need to include mass units (i.e. there’s no dependence on
𝑘𝐵𝑇).

wlcsim.bd.homolog

BD of two homologously-linked linear Rouse polymers.

See homolog_points_to_loops_list for a description of how the homologous network structure is handled.

A specialized

wlcsim.bd.homolog._jit_rouse_homologs
“Inner loop” of rouse_homologs.

Some typing stuff: needs N, N_tot as int, needs tether_list/loop_list as dtype == int64, and uses
loop_list.shape[0] to get num_loops. This is in particular important for empty list cases, where you need to
do stuff like

>>> x = rouse._jit_rouse_homologs(int(N), int(2*N),
>>> np.array([]).astype(int),
>>> np.array([[]]).T.astype(int),
>>> L, b, D, Aex, R, R, R, t, t_save)

wlcsim.bd.homolog.points_to_loops_list(N, homolog_points)
Create loops list for jit_rouse_linked.

Parameters

• N (int) – number of beads in each polymer if they were unbound

• homolog_points ((L,) array_like) – list of loci indices 𝑙𝑖
𝐿
1 , 𝑙𝑖 ∈ [1, 𝑁] (beads)

that are homologously paired.

Returns

• N_tot (int) – final size of the x0 array for the simulation.

• loop_list ((L,4) np.array) – data structure used by jit_rouse_linked to correctly compute the
spring forces in the network.

Notes

You can use the output like

>>> k1l, k1r, k2l, k2r = loop_list[i]

5.1. wlcsim Python Module 15

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

where “k[i][l,r]” refers to the bead demarcating the [l]eft or [r]ight end of a given “homologous loop” on each
of the polymers polymer 𝑖 ∈ [1, 2].

Namely, the connectivity structure of our polymer “network” is that for each k1l, k1r, k2l, k2r in loop_list, the
beads k1l thru k1r are linked sequentially (as are k2l thru k2r), but the beads k1[l,r] are linked to the beads
k2[l,r], respectively. This network structure can represent arbitrary “homologously linked” polymers, i.e. those
of the form

-- --- ------- -- -
\/ \/ \/ \/
/\ /\ /\ /\

-- --- ------- -- -

Notice in the example below that loop_list[1:,1] and loop_list[:-1,0] are both the same as homolog_list.

Example

Here’s an example for a typical case. With 101 beads per polymer (so 100 inter-bead segments), and one tenth
of the beads bound to each other, we might get the following Poisson-space homolog points:

>>> N = 101; FP = 0.1

>>> homolog_points = np.where(np.random.rand(int(N)) < FP)[0]

>>> homolog_points
array([5, 18, 27, 59, 68, 82, 90, 94])

These eight homologous junctions would lead to a simulation array length of 2*N - len(homolog_points) = 202
- 8 = 194. So N_tot will be 194, and the loop_list will look like

>>> N_tot, loop_list = rouse.homolog_points_to_loops_list(N, homolog_points)

>>> loop_list
array([[-1, 5, 101, 105],

[5, 18, 106, 117],
[18, 27, 118, 125],
[27, 59, 126, 156],
[59, 68, 157, 164],
[68, 82, 165, 177],
[82, 90, 178, 184],
[90, 94, 185, 187],
[94, 101, 188, 193]])

This can be read as follows. The first four beads of each polymer are “free”, so first row is saying that beads 0
thru 4 correspond to unlinked beads in polymer 1. bead 5 is the linked bead (has half the diffusivity). since the
polymer is of length 101, if there were no connections, the first polymer would extend from bead 0 to bead 100,
and the second from bead 101 to bead 201. but since bead “5” is linked to (what would be) bead 106, that bead
is omitted from the second polymer, and beads 101-105 are the “free end” of the second polymer.

The second row corresponds to the first actual “loop”. The two tethering points are beads 5 and 18 of the first
polymer. What would have been beads 106 and 119 (that’s beads 5 and 18 of the second polymer) are omitted
from the list of simulated beads. So bead 106 is linked to bead 5 and bead 117 is linked to bead 18, and beads
106-117 are linked sequentially.

Similarly, beads 18 and 118 (and 27 and 125) are linked, with beads 118-125 being linked sequentially.

16 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

wlcsim.bd.homolog.rouse(N, FP, L, b, D, Aex, rx, ry, rz, t, t_save=None, tether_list=None)
BD simulation of two homologous yeast chromosomes in meiosis.

An arbitrary elliptical-shaped confinement can be chosen, and in order to simulate synaptonemal formation in
prophase, some fraction FP of the “homologous” beads of the polymer can be “rigidly tethered” to each other.
The simulation treats these pairs as being one bead (with half the diffusion coefficient). The elastic force can
then be communicated between the two polymers via the connecting loci.

Depending on what part of prophase is being simulated, either (or both) of the telomeres or centromeres can be
tethered to the confinement by including them in tether_list. Currently the confinement force and the tethering
force are both cubic w.r.t. the distance from the confining ellipse with the same strength (Aex), and have the
form described in f_conf_ellipse() (and f_tether_ellipse()).

Parameters

• N (int) – Number of beads to use in the discretized Rouse chain

• FP (float) – FP∈ [0, 1]𝑖𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑏𝑒𝑎𝑑𝑠𝑖𝑛𝑡ℎ𝑒𝑐ℎ𝑎𝑖𝑛(𝑜𝑢𝑡𝑜𝑓) that will be tethered to
each other

• L (float) – Length of the chain (in desired length units)

• b (float) – Kuhn length of the chain (in same length units as L)

• D (float) – The diffusivity of a Kuhn length of the chain. This can often difficult to mea-
sure directly, but see the documentation for the function measured_D_to_rouse() for
instructions on how to compute this value given clean measurements of short-time regular
diffusion or Rouse-like MSD behavior

• Aex (float) – multiplicative prefactor controlling strength of confinment and tethering
forces

• ry, rz (rx,) – radius of confinement in x, y, z direction(s) respectively

• t ((M,) float, array_like) – The BD integrator will step time from t[0] to t[1] to
t[2] to . . .

• t_save ((m,) float, array_like) – t_save⊂ will be the time steps where the sim-
ulation output is saved. Default is t_save = t.

• tether_list (int, array_like) – list of bead indices that will be tethered to the
confinement surface, for now, both polymers must be tethered at the same beads (but this
would not be hard to change).

Returns

• tether_list (List<int>) – Indices (into compressed Ntot output) that were tethered to the
confinement surface

• loop_list ((~N*FP, 4) int) – Output of points_to_loops_list used to specify which points are
tethered

• X ((len(t_save), Ntot, 3)) – output of BD simulation at each time in t_save. The num-
ber of output beads Ntot <= 2*N excludes the beads on the second polymer whose
positions are determined by the fact that they are tethered to the first polymer. Use
split_homologs_X() to reshape this output into shape (2, len(t_save), N, 3).

wlcsim.bd.homolog.sim_loc(i, N, loop_list)
Return actual indices for bead “i” of the second polymer.

Useful for indexing directly into the trucated simulation output array.

Parameters

5.1. wlcsim Python Module 17

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

• i ((M,) int, array_like) – beads index is requested for

• N (int) – actual number of beads in each polymer

• loop_list ((~N*FP, 4) int) – connectivity of the homologous polymers being sim-
ulated

Returns iloc – index in simulation array (or None if the bead is a paired bead) for each bead in i.

Return type (M,) Optional<int>, array_like

wlcsim.bd.homolog.split_homolog_x(x0, N, loop_list)
Make an (N_tot,3) array from rouse_homologs into (2,N,3).

wlcsim.bd.homolog.split_homologs_X(X, N, loop_list)
Make the (Nt,Ntot,3) output of rouse_homologs to (2,Nt,N,3).

wlcsim.bd.forces

Force fields used in our BD integrators.

Our BD code can be summarized as typically looking like:

X = init_function()
for t_i in requested_times:

X = integrator_step(f_all, X, prev_t, t_i)
prev_t = t_i

where f_all takes X (size N_beads by N_dimensions) and t and returns the total force on each of the beads at
time t.

This module holds all the functions that can be used to construct f_all. Broadly, they are named based on the source
of the force:

• f_elas_* are elastic forces, they define the physics of the polymer being simulated. Linear, ring, and different
types of network polymers have their own independent implementations.

• f_conf_* are confinement forces.

• f_tether_* tether individual beads of the polymer to an external structure.

• Others may be added in the future.

Notes

Because they are in the “innermost loop”, it is important that these functions are just-in-time compile-able when
possible.

wlcsim.bd.forces.f_conf_ellipse
Compute soft (cubic) force due to elliptical confinement.

wlcsim.bd.forces.f_elas_homolog_rouse
Compute spring forces on two “homologously linked linear rouse polymers.

The two polymers are (homologously) at beads specified by loop_list. While each polymer is of length N beads,
the beads that are hooked together move together identically, so you have x0.shape[0] == 2*N - len(loop_list)

We assume that, per the spec in ~.homolog_points_to_loops_list, a polymer of the shape

18 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

++ ^^^ ''''''' "" =
\ / \ / \ / \ /
. . . .

/ \ / \ / \ / \
-- --- ------- -- -

will be laid out in memory like

--.---.-------.--.-++^^^'''''''""=

If we call the lower polymer “polymer 1”, and all the beads on the top row “polymer 2”, then it makes sense to
first compute the spring forces between adjacent beads in polymer 1 as if there was no “polymer 2”. Then, we
can compute all the forces between beads in “polymer 2” and the “.” beads. Finally, for each “loop” (represented
as symbols of different types above) in polymer 2, we can compute the usual linear forces along the polymer.

wlcsim.bd.forces.f_elas_linear_rouse
Compute spring forces on single, linear rouse polymer.

wlcsim.bd.forces.f_elas_linear_sswlc
Compute spring forces and torques on each bead of dsswlc.

wlcsim.bd.forces.f_tether_ellipse
Compute soft (cubic) force towards an elliptical confinement.

wlcsim.bd.runge_kutta

Some spare stochastic integrators.

Not currently used because if you pass a function as an argument you can’t @numba.jit that.

For rouse chains, Bruno (that’s me) has tested the srk1 integrator and found it to work extremely well (see notes in
wlcsim.bd.rouse on suggested dt).

For WLC/ssWLC, Lena found it useful to use a scheme that was higher deterministic order in time, to resolve the high
elastic energies involved. Bruno has not yet tested this explicitly.

You can find Lena’s algorithm (hold brownian force constant over an rk4 step) below. It is unlikely to be strongly
convergent except if you subsample below the actual desired time resolution.

wlcsim.bd.runge_kutta._get_bead_msd
center bead by default

for 1e4-long time arrays, this takes ~10-30s on my laptop

wlcsim.bd.runge_kutta._get_scalar_corr
fast correlation calculation for testing

wlcsim.bd.runge_kutta._get_vector_corr
fast correlation calculation for testing

wlcsim.bd.runge_kutta.ou(x0, t, k_over_xi, D, method=<function rk4_thermal_lena>)
simulate ornstein uhlenbeck process with theta=k_over_xi and sigma^2/2=D

wlcsim.bd.runge_kutta.rk4_thermal_bruno(f, D, t, x0)
Test new method: Attempt to keep 𝜔 constant.

WARNING: does not converge strongly (autocorrelation function seems higher than should be for OU pro-
cess. . .), as is. . . x’(t) = f(x(t), t) + Xi(t), where Xi is thermal, diffusivity D

x0 is x(t[0]).

5.1. wlcsim Python Module 19

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

𝑓 : 𝑅𝑛𝑥𝑅− > 𝑅𝑛

wlcsim.bd.runge_kutta.rk4_thermal_lena(f, D, t, x0)
x’(t) = f(x(t), t) + Xi(t), where Xi is thermal, diffusivity D.

x0 is x(t[0]).

𝑓 : 𝑅𝑛𝑥𝑅− > 𝑅𝑛

wlcsim.bd.runge_kutta.srk1_roberts(f, D, t, x0)
From wiki, from A. J. Roberts. Modify the improved Euler scheme to integrate stochastic differential equations.
[1], Oct 2012.

If we have an Ito SDE given by

𝑑�⃗� = �⃗�(𝑡, �⃗�) + �⃗�(𝑡, �⃗�)𝑑𝑊

then

�⃗�1 = ℎ�⃗�(𝑡𝑘, �⃗�𝑘) + (∆𝑊𝑘 − 𝑆𝑘

√
ℎ)⃗𝑏(𝑡𝑘, �⃗�𝑘)�⃗�2 = ℎ�⃗�(𝑡𝑘+1, �⃗�𝑘 + �⃗�1) + (∆𝑊𝑘 − 𝑆𝑘

√
ℎ)⃗𝑏(𝑡𝑘+1, �⃗�𝑘 + �⃗�1)�⃗�𝑘+1 = �⃗�𝑘 +

1

2
(�⃗�1 + �⃗�2)

where ∆𝑊𝑘 =
√
ℎ𝑍𝑘 for a normal random 𝑍𝑘 ∼ 𝑁(0, 1), and 𝑆𝑘 = ±1, with the sign chosen uniformly at

random each time.

wlcsim.bd.tsswlc

Simulation twistable, stretchable-shearable wormlike chains.

Notes

The ssWLC is implemented as described in Koslover et. al., Soft Matter, 2013, 9, 7016. This defines the locations
(𝑟(𝑖)(𝑡𝑗)) and tangent vectors (𝑢(𝑖)(𝑡𝑗)) of each (𝑖th) bead at each time point (𝑡𝑗).

The twist energy is (loosely speaking) quadratic in the angle that one must rotate the material normals of one bead to
get them to align with the next bead (after the two beads have been rotated once to make the tangent vectors align).

There are other strategies one might take for this, but we will leave them as “#TODO” in the code for now.

wlcsim.bd.tsswlc._jit_sswlc_clean(N, L, lp, t, t_save, e_b, gam, e_par, e_perp, eta, xi_u, xi_r)
WARNING: known to be buggy. . .

wlcsim.bd.tsswlc._jit_sswlc_lena(N, L, lp, t, t_save, e_b, gam, e_par, e_perp, eta, xi_u, xi_r)
TODO: test

wlcsim.bd.tsswlc.sswlc(N, L, lp, t, t_save)
Simulate a stretchable-shearable WLC.

Parameters

• N (int) – The number of beads to use.

• L (float) – The length of the chain.

• lp (float) – The persistence length of the underlying WLC being approximated. (Must
be same units as L.

• t (array_like) – The times for which to simulate the polymer’s motion.

• t_save ((M,) array_like) – The subset of t for which we should save the output.

Returns

20 Chapter 5. Disclaimer

https://pdfs.semanticscholar.org/87e5/64cd9b84db3ddf38a869c14de09fa2e05de2.pdf

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

• r ((M, N, 3) array of float) – The positions of each bead at each save time.

• u ((M, N, 3) array of float) – The tangent vectors to the underlying wormlike chain at each
bead.

5.1.2 wlcsim.analytical

Modules containing routines to evaluate analytical results for various polymer chains (equilibrium statistics and dy-
namics).

Rouse polymer, analytical results.

Notes

There are two parameterizations of the “Rouse” polymer that are commonly used, and they use the same variable name
for two different things.

In one, N is the number of Kuhn lengths, and in the other, N is the number of beads, each of which can represent an
arbitrary number of Kuhn lengths.

wlcsim.analytical.rouse.end2end_distance(r, lp, N, L)
For now, always returns values for r = np.linspace(0, 1, 50001).

Parameters

• r ((N,) float, array_like) – the values at which to evaluate the end-to-end prob-
ability distribution. ignored for now (TODO: fix)

• lp (float) – persistence length of polymer

• N (int) – number of beads in polymer

• L (float) – polymer length

Returns

• x ((5001,) float) – np.linspace(0, 1, 5001)

• g ((5001,) float) – 𝑃 (|𝑅| = 𝑥|𝑙𝑝,𝑁, 𝐿)

Notes

Uses the gaussian chain whenever applicable, ssWLC tabulated values otherwise. If you request parameters that
require a WLC end-to-end distance, the function will ValueError.

wlcsim.analytical.rouse.end2end_distance_gauss(r, b, N, L)
in each dimension. . . ? seems to be off by a factor of 3 from the simulation. . . .

wlcsim.analytical.rouse.end_to_end_corr(t, D, N, num_modes=10000)
Doi and Edwards, Eq. 4.35

wlcsim.analytical.rouse.gaussian_G
Green’s function of a Gaussian chain at N Kuhn lengths of separation, given a Kuhn length of b

wlcsim.analytical.rouse.gaussian_Ploop
Looping probability for two loci on a Gaussian chain N kuhn lengths apart, when the Kuhn length is b, and the
capture radius is a

wlcsim.analytical.rouse.kp_over_kbt
“non-dimensionalized” k_p is all that’s needed for most formulas, e.g. MSD.

5.1. wlcsim Python Module 21

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Type k_p/(k_B T)

wlcsim.analytical.rouse.linear_mid_msd
modified from Weber Phys Rev E 2010, Eq. 24.

wlcsim.analytical.rouse.linear_mscd(t, D, Ndel, N, b=1, num_modes=10000)
Compute mscd for two points on a linear polymer.

Parameters

• t ((M,) float, array_like) – Times at which to evaluate the MSCD

• D (float) – Diffusion coefficient, (in desired output length units). Equal to 𝑘𝐵𝑇/𝜉 for 𝜉
in units of “per Kuhn length”.

• Ndel (float) – Distance from the last linkage site to the measured site. This ends up
being (1/2)*separation between the loci (in Kuhn lengths).

• N (float) – The full lengh of the linear polymer (in Kuhn lengths).

• b (float) – The Kuhn length (in desired length units).

• num_modes (int) – how many Rouse modes to include in the sum

Returns mscd – result

Return type (M,) np.array<float>

wlcsim.analytical.rouse.ring_mscd(t, D, Ndel, N, b=1, num_modes=10000)
Compute mscd for two points on a ring.

Parameters

• t ((M,) float, array_like) – Times at which to evaluate the MSCD.

• D (float) – Diffusion coefficient, (in desired output length units). Equal to 𝑘𝐵𝑇/𝜉 for 𝜉
in units of “per Kuhn length”.

• Ndel (float) – (1/2)*separation between the loci on loop (in Kuhn lengths)

• N (float) – full length of the loop (in Kuhn lengths)

• b (float) – The Kuhn length, in desired output length units.

• num_modes (int) – How many Rouse modes to include in the sum.

Returns mscd – result

Return type (M,) np.array<float>

wlcsim.analytical.rouse.rouse_large_cvv_g(t, delta, deltaN, b, D)
Cvv^delta(t) for infinite polymer.

Lampo, BPJ, 2016 Eq. 16.

wlcsim.analytical.rouse.rouse_mode
Eigenbasis for Rouse model.

Indexed by p, depends only on position n/N along the polymer of length N. N=1 by default.

Weber, Phys Rev E, 2010 (Eq 14)

wlcsim.analytical.rouse.rouse_mode_coef
Weber Phys Rev E 2010, after Eq. 18.

Type k_p

22 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

wlcsim.analytical.rouse.test_rouse_msd_line_approx()
Figure out what Dapp is exactly using our analytical result.

if we use msd_approx(t) = 3*bhat*np.sqrt(Dhat*t)/np.sqrt(3)*1.1283791(6) then |msd(t) -
msd_approx(t)|/msd(t) = np.sqrt(2)/N*np.power(t, -1/2). msd_approx(t) >
msd(t) in this range, so that means that msd_approx(t)/(np.sqrt(2)/N*np.power(t, -1/2)
+ 1) = msd(t).

if we redefine msd_approx with this correction, the new relative error is about np.sqrt(2)/N/
100*t**(-1/2)? gotta see if this carries over to other chain parameters though. . . it does not. . . this time
msd(t) is bigger, so msd_approx = msd_approx(t)/(1 - np.sqrt(2)/N/100*t**(-1/2)).

okay actually looks like extra factor is additive?

for N = 1e8+1; L = 25; b = 2; D = 1;, we have msd_approx(t) - msd(t) = 1.01321183e-07

for N = 1e8+1; L = 174; b = 150; D = 166;, we have msd_approx(t) - msd(t) = 5.2889657(3)e-05

for N = 1e8+1; L = 174; b = 15; D = 166;, we have msd_approx(t) - msd(t) = 5.2889657(3)e-06

for N = 1e8+1; L = 17.4; b = 15; D = 166;, we have msd_approx(t) - msd(t) = 5.2889657(3)e-07

for N = 1e8+1; L = 17.4; b = 15; D = 16.6;, we have msd_approx(t) - msd(t) = 5.2889657(3)e-07 (no change)

for N = 1e7+1; L = 17.4; b = 15; D = 16.6;, we have msd_approx(t) - msd(t) = 5.2889657(3)e-06 (no change)

so the answer is like 3*bhat*np.sqrt(Dhat*t)/np.sqrt(3)*1.1283791615 - 0.202642385398*b*L/N

Fractional (Rouse) polymer. A Rouse polymer in a viscoelastic medium.

For the case alpha=1, these formulas should reduce to the analogous ones in wlcsim.analytical.rouse.

wlcsim.analytical.fractional.frac_cv(t, alpha, D)
Velocity autocorrelation of a fractionally-diffusing particle. Weber, Phys Rev E, 2010 (Eq 32)

wlcsim.analytical.fractional.frac_discrete_cv(t, delta, alpha, D)
Discrete velocity autocorrelation of a fractionally-diffusing particle. Weber, Phys Rev E, 2010 (Eq 33)

wlcsim.analytical.fractional.frac_discrete_cv_normalized(t, delta, alpha)
Normalized discrete velocity autocorrelation of a fractionally-diffusing particle. Should be equivalent to

frac_discrete_cv(t, delta, 1, 1)/frac_discrete_cv(0, delta, 1, 1)

Lampo, BPJ, 2016 (Eq 5)

wlcsim.analytical.fractional.frac_msd(t, alpha, D)
MSD of fractionally diffusing free particle.

Weber, Phys Rev E, 2010 (Eq 10)

wlcsim.analytical.fractional.frac_rouse_cvv(t, delta, n1, n2, alpha, b, N, D,
min_modes=500, rtol=1e-05, atol=1e-
08, force_convergence=True)

Velocity cross-correlation of two points on fractional Rouse polymer

rtol/atol specify when to stop adding rouse modes. a particle (t,delta) pair is considered to have converged when
np.isclose returns true give rtol/atol and p is even (p odd contributes almost nothing)

Lampo, BPJ, 2016 Eq. 10.

wlcsim.analytical.fractional.frac_rouse_mid_msd(t, alpha, b, N, D, num_modes=1000)
Weber Phys Rev E 2010, Eq. 24.

wlcsim.analytical.fractional.frac_rouse_mode_corr(p, t, alpha, b, N, D)
Weber Phys Rev E 2010, Eq. 21.

5.1. wlcsim Python Module 23

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

wlcsim.analytical.fractional.rouse_cv_mid(t, alpha, b, N, D, min_modes=1000)
Velocity autocorrelation of midpoint of a rouse polymer.

Weber Phys Rev E 2010, Eq. 33.

wlcsim.analytical.fractional.rouse_cvv_ep(t, delta, p, alpha, b, N, D)
Term in parenthesis in Lampo, BPJ, 2016 Eq. 10.

wlcsim.analytical.fractional.rouse_nondim_(t, delta, n1, n2, alpha, b, N, D)
uses parameters defined by Lampo et al, BPJ, 2016, eq 12

wlcsim.analytical.fractional.tDeltaN(n1, n2, alpha, b, D)
Lampo et al, BPJ, 2016, eq 11

wlcsim.analytical.fractional.tR(alpha, b, N, D)
Lampo et al, BPJ, 2016, eq 8

wlcsim.analytical.fractional.un_rouse_nondim(tOverDelta, deltaOverTDeltaN, alpha,
delN=0.001)

Takes a requested choice of parameters to compare to Tom’s calculated values and generates a full parameter
list that satisfies those requirements.

uses approximation defined by Lampo et al, BPJ, 2016, eq 12

In Tom’s paper, delN is non-dimensinoalized away into deltaOverTDeltaN, but that only works in the case
where the chain is infinitely long. Otherwise, where exactly we choose n1,n2 will affect the velocity correlation
because of the effects of the chain ends. While other choices are truly arbitrary (e.g. D, b, N, etc), delN can be
used to specify the size of the segment (relative to the whole chain) used to compute the cross correlation.

wlcsim.analytical.fractional.vc(t, delta, beta)
velocity correlation of locus on rouse polymer. beta = alpha/2.

wlcsim.analytical.fractional.vvc_rescaled_theory(t, delta, beta, A, tDeltaN)
velocity cross correlation of two points on rouse polymer.

wlcsim.analytical.fractional.vvc_unscaled_theory(t, delta, beta, A, tDeltaN)
velocity cross correlation of two points on rouse polymer.

5.1.3 wlcsim.data

5.1.4 wlcsim.input

This module “understands” the input format of wlcsim.exe

class wlcsim.input.InputFormat
An enumeration.

class wlcsim.input.ParsedInput(input_file=None, params=None)
Knows how to handle various input file types used by wlcsim simulator over the years, and transparently converts
into new parameter naming conventions.

input = ParsedInput(file_name) print(input.ordered_param_names) # see params in order defined
print(input.ordered_param_values) # to see values input.write(outfile_name) # write clone of input file

decide_input_format()
Decide between the two input formats we know of. Not too hard, since one uses Fortran-style comments,
which we can look out for, and the other uses bash style comments. Further, the former specifies param
names and values on separate lines, while the latter specifies them on the same line.

24 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

parse_defines_params_file()
Parse file in the format of src/defines.inc. Each line begins with #define WLC_P__[PARAM_NAME] [_a-
zA-Z0-9] where WLC_P__[A-Z]* is the parameter name and the piece after the space is the value of the
parameter.

TODO:test

parse_lena_params_file()
Lena-style input files have comment lines starting with a “#”. Any other non-blank lines must be of the
form “[identifier][whitespace][value]”, where an identifier is of the form “[_a-zA-Z][_a-zA-Z0-9]*”, and
a value can be a boolean, float, int or string. They will always be stored as strings in the params dictionary
for downstream parsing as needed.

Identifiers, like fortran variables, are interpreted in a case-insensitive manner by the wlcsim program, and
so will be store in all-caps within the ParsedInput to signify this.

parse_original_params_file()
Original-style input files have three garbage lines at the top used for commenting then triplets of lines
describing one variable each. The first line of the triplet is a counter, for ease of hardcoding input reader,
the second line contains the variable name (which is not used by the input reader) in order to make parsing
possible outside of the ahrdcoded wlcsim input reader, and the third line contains the value of the parameter
itself. The first two lines of each triplet have a fixed form that we use to extract the record numbers and
parameter names, but these forms are not used by wlcsim itself, which ignores these lnies completely.
Thus, it is possible that the user specified a particular name for a parameter but that name does not match
what wlcsim interpreted it as, since wlcsim simply uses the order of the parameters in this file to determine
their identities.

parse_params_file()
Parse and populate ParsedInput’s params, ordered_param_names This parser currently understands three
file formats: 1) “ORIGINAL” is the input method understood by Andy’s hardcoded input reader in the
original code used the Spakowitz lab was founded. 2) “LENA” is a spec using slightly more general input
reader written by Elena Koslover while Andy’s student. 3) “DEFINES” is the format of the src/defines.inc
file.

write(output_file_name)
writes out a valid input file for wlcsim.exe given parameters in the format returned by read_file

wlcsim.input.correct_param_name(name)
Takes messy param names from different generations of the simulator and converts them to their newest forms
so that simulations from across different years can be tabulated together.

wlcsim.input.correct_param_value(name, value)
Some old param names also have new types. This takes messy param names from different generations of the
simulator and converts their names and values to their newest forms so that simulations from across different
years can be tabulated together.

5.1.5 wlcsim.FrankElastic

The calculation of Frank elastic constants occures in the function get_Frank_values.

wlcsim.FrankElastic.frank.get_Frank_values(gamma, N, gammaNmax=None,
laplace_args={})

Returns dictionary of Frank Elastic Values for specified system.

Nondimensionalized Frank elastc constant K’=K*A/(phi_00*L). Maier saupe parameter ether nondimension-
alized by L*A*phi_00 or 2*l_p*A*phi_00 for aLAf and a2lpAf respectively. Correlation functions S are also
returned.

Parameters

5.1. wlcsim Python Module 25

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

• gamma (real) – Field strength in kT’s per Kuhn length of chain

• N (real) – How many Kuhn lengths long the polymers are

• gammaNmax (real) – Cutoff to prevent wasting time.

• laplace_args (dict) – Arguements to pass to inverse laplace calculation.

Note: when N=0.0, gamma is assume to be gamma*N, that is kT’s per chain.

wlcsim.FrankElastic.frank.get_a(gamma, N, gammaNmax=None)
Maier-Saupe parameter need to generate field strength gamma.

Parameters

• gamma (real) – Field strength in kT’s per Kuhn length of chain

• N (real) – How many Kuhn lengths long the polymers are

Note: when N=0.0, gamma is assume to be gamma*N, that is kT’s per chain.

wlcsim.FrankElastic.frank.get_first_pole(gamma, tol=1e-06)
Search the real axes for polls of G[0][0,0]. Returns highest real value.

Parameters

• gamma (float) – Field strength.

• tol (float) – absolute tolerance of result

wlcsim.FrankElastic.frank.test_Frank_accuracy(N=10, gamma=1000)
Compair result for different laplace_args.

Looks really good at N=10, gamma=25 To within ~0.3% for N=100, gamma=50. Increasing factor is impoartant.
At N=100 gamma=100 the factor=400 level gets off by a few percent. At N=10, gamma=100 it is accurate to
may descimal points At N=10, gamma=1000 there is a several persent error

Plotting scripts are found in plot_Frank

wlcsim.FrankElastic.plot_frank.Multi_frank_plot(load=None, logy=False)
Plot data from get_Multi_frank_data

Parameters

• load (string) – File to load

• logy (bool) – Log y axis

wlcsim.FrankElastic.plot_frank.find_gamma(N, aset=None, gammaN=True,
gamma_TOL=1e-06, a_TOL=1e-06)

Frank Elastic data for given N and a

Parameters

• N (float) – Number of Kuhn length

• aset (itrable) – aLAf or a2lpAf values

• gammaN (bool) – If ture use aLAf, else use a2lpAf, amoung other things

wlcsim.FrankElastic.plot_frank.get_Multi_frank_data(log_gamma=False,
npts=48, gammaN=False,
maxgamma=35,
saveas=’Frank.p’, nthreads=25,
Nset=None)

Calculate Frank elastic constants for a range of gamma and N.

Parameters

26 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

• log_gamma (bool) – Space gamma logrithmeicly

• npts (int) – number gamma values

• N (real) – Kuhn lenths in polymer

• Where to save results. (saveas=) –

• gammaN (bool) – Devide gamma by N. I.e. nondimensionalized by polyer length

• nthreads (int) – Number of threads to use

• Nset (iterable) – Where to save results

wlcsim.FrankElastic.plot_frank.get_Nsweep_data(saveas=’Nsweep.p’, MultiPro-
cess=True, nthreads=25, Ns=None)

Calculate Frank Elastic Constants for sweep over N

Parameters

• Where to save results. (saveas=) –

• nthreads (int) – Number of threads to use

• MultiProcess (bool) – Use many threads

• Ns (iterable) – N values

wlcsim.FrankElastic.plot_frank.get_data_for_Splot(name, nthreads=25, N=0.05,
npts=45)

Get data for plot_S

Parameters

• name (string) – Where to save result.

• nthreads (int) – Number of computational threads

• N (real) – Kuhn lenths in polymer

• npts (int) – number gamma values

wlcsim.FrankElastic.plot_frank.multi_process_fun(inputs)
pass through for muiltiproccessing

wlcsim.FrankElastic.plot_frank.plotNsweep(load)
Plot results from get_Nsweep_data

Parameters load (string) – File to load from.

wlcsim.FrankElastic.plot_frank.plot_Frank(log_gamma=True, MultiProcess=True,
npts=24, N=1.0, gammaN=False,
maxgamma=35, nthreads=25)

Calculate Frank Elastic data for range of gamma values.

Parameters

• log_gamma (bool) – Space gamma logrithmeicly

• MultiProcess (bool) – Use multiple threads

• npts (int) – number gamma values

• N (real) – Kuhn lenths in polymer

• gammaN (bool) – Devide gamma by N. I.e. nondimensionalized by polyer length

• nthreads (int) – Number of threads to use

5.1. wlcsim Python Module 27

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

wlcsim.FrankElastic.plot_frank.plot_S(name)
Plot S over diffetn gamma values. :param name: File name to load data from. :type name: string

wlcsim.FrankElastic.plot_frank.seperate_bend_twist_splay(load, gammaN=False,
logy=False)

Plot data from get_Multi_frank_data seperatly

Parameters

• load (string) – File to load

• logy (bool) – Log y axis

There are also a number of helper funtions,

wlcsim.FrankElastic.invlaplace.invLaplace(p_values, G_values, L, reduction=0.0)
Numerical Inverse Laplace from 𝐺(𝑝) → 𝐺(𝐿).

Parameters

• p_values (array_like) – 1D complex array of p values (i.e. the contour)

• G_values (array_like) – 1D complex array G(p)

• L (float) – Polymer length (In Kuhn lengths)

• reduction (float) – multiply answer by exp(-reduction) for better numerics

wlcsim.FrankElastic.invlaplace.invLaplace_path(path, cutts, G_values, L, reduction=0.0)
Inverse laplace transform based on path.

Parameters

• path (ndarray) – complex path values

• cutts (dict) – specified by path

• G_values –

wlcsim.FrankElastic.invlaplace.make_path(factor=100, scale=1.0, lambda_offset=0.1,
width=2.0, depth=2.0, nwing=100, nside=30,
nback=20, maxp=6000, pole_offset=0.0)

Path for complex integral that draws a half rectangle about the origin.

Parameters

• factor (int) – Number of points to caltulate (sort of)

• scale (float) – Scale of path. Recomended: around 10.0/N

• lambda_offset (float) – distance from complex axis

• width (float) – width of rectangle

• depth (float) – depth of rectangle

• nwing (int) – number of points in wing before factor

• nside (int) – number of points to a side before factor

• back (int) – number of points on the back before factor

• maxp (float) – approximation for infinity

• pole_offset (float) – add to depth

wlcsim.FrankElastic.stonefence.Gmll_matrix
“Matrox of propagators between starting and ending l value.

28 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Parameters

• Wplus (numpy array) – Result of Wplus_vec for same m, p

• Wminus (numpy array) – Reult of Wminus_vec for same m, p

• Am (numpy array) – Result of Am_vec for same m

• PgammaB (numpy array) – Result of PgammaB_vec for same m, p, gamma

• gamma (float) – alignment strength, in kT’s per Kuhn length

• m (int) – z component of agular momentum quantum number

Returns An ORDER_L x ORDER_L numpy matrix with propagators that use Maier-Saupe steps to
get from l0 to lf.

wlcsim.FrankElastic.stonefence.PgammaB_vec
P - gamma beta

Returns vector with index ell

wlcsim.FrankElastic.stonefence.precalculate_data(p, gamma, m_values=[0])
Precalculate W_plus, W_minus, W_pm, and G_m_ll

Parameters

• p (complex) – laplace conjugate of path length

• gamma (real) – aligning l=2 (Maier-Saupe) field strength

• m_values (list) – list of integer m values to precalculate for

wlcsim.FrankElastic.yyyreal.YR(m, ell, phi, theta)
Real spherical harmonic function.

wlcsim.FrankElastic.yyyreal.YYY(m1, L, M, m2, ORDER_L=50)
Same as YYYreal

wlcsim.FrankElastic.yyyreal.YYY_0mm(m, ORDER_L)
Y_{ell1,0} Y_{2,m} Y_{ell2,m}

wlcsim.FrankElastic.yyyreal.YYY_l1(m1, m, m2, ORDER_L)
Y_{l1,m1} Y_{1,m} Y{l2,m2}

wlcsim.FrankElastic.yyyreal.YYYreal(m1, L, M, m2, ORDER_L)
YYYreal_{l_1,l_2} = int dvec{u} Y_{l_1, m1} Y_{L,M} Y_{l2,m2}

Not able to handle all combiniations of inputs. Can only handle Y_{l_1,0} Y_{2,M} Y_{l_2,M} or Y_{l_1,M}
Y_{2,M} Y_{l_2,0} or Y_{l_1,m_1} Y_{1,M} Y{l_2,m_2} or Y_{l_1,m_1} Y_{0,0} Y{l_2,m_2}

wlcsim.FrankElastic.yyyreal.ind_sphere(fun)
Integrate function on sphere.

Parameters fun (callable) – fun(theta, phi)

wlcsim.FrankElastic.yyyreal.intYYYnum(l1, m1, L, M, l2, m2)
Numerical integral over 3 spherical harmics

5.1. wlcsim Python Module 29

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

5.2 wlcsim Fortran Codebase Structure

program wlcsim
Use a universal discretization scheme to simulate from WLCs through Gaussian chains.

The main entry point of the program is pretty useless as a starting point to understand the codebase, and simply calls
one of several “versions” of the program built from our Brownian Dynamics/Monte Carlo API.

Program

program main
Loads in parameters from the input file. Calculates parameters used in simulation from input parameters. For
each save point requested, uses either Bruno, Quinn, or Brad’s simulators to step forwards (in time or Monte
Carlo steps) and writes the output and (optionally) the simulation state needed to restart the simulation.

Use flap (command_line_interface()), precision
(setup_runtime_floats()), params (wlcsim_params(), wlc_repsuffix(),
maxfilenamelen(), save_simulation_state(), set_parameters(),
initialize_wlcsim_data(), save_parameters(), printdescription(),
printwindowstats())

30 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Call to stop_if_err(), setup_runtime_floats(), set_parameters(),
initialize_wlcsim_data(), save_parameters(),
save_simulation_state(), wlcsim_quinn(), wlcsim_bruno(),
wlcsim_bruno_mc(), wlcsim_bruno_looping_events()

The actual hard work is done in the wlcsim_* files

Subroutines and functions

subroutine wlcsim_bruno(save_ind, wlc_p)
values from wlcsim_data

Parameters

• save_ind [integer,in]

• wlc_p [wlcsim_params,in]

Use params (dp(), wlcsim_params(), pack_as_para(), printenergies(),
printsiminfo())

Called from main

Call to initialize_energies_from_scratch(), mcsim(),
verify_energies_from_scratch(), bdsim(), pack_as_para(), stress(),
stressp(), energy_elas(), energy_self_chain(), printsiminfo(),
printenergies()

subroutine wlcsim_quinn(save_ind, wlc_p)
Quinn’s branch of the Fortran codebase. This branch is set up for Monte-Carlo simulations with a particular
focus on parallel tempering.

Parameters

• save_ind [integer,in] :: 1, 2, . . .

• wlc_p [wlcsim_params,inout]

Use params, mpi

Called from main

Call to onlynode(), head_node(), worker_node(), printenergies(),
printwindowstats(), printlinkingnumber()

The main entry points for our API are the mcsim.f03 and BDsim.f03 routines, which allow you to do Monte Carlo
moves and Brownian Dynamics timesteps (respectively) given a set of energies (or forces, respectively) specified by
the input in defines.inc.

Subroutines and functions

subroutine mcsim(wlc_p)
Perform Metropolis Hastings Monte Carlo moves on the system of polymers. Loops over move types (crank
shaft, slide,. . .) and calls each energy function. Accepts move by the Metropolis condition on the change in
energy. If accepted update system.

Parameters wlc_p [wlcsim_params,inout] :: system varibles

Use params (wlc_phit(), wlc_crossp(), wlc_abp(), wlc_dphi_l2(), wlc_ab(),
wlc_ncross(), wlc_ind_exchange(), wlc_indphi(), wlc_rand_stat(),
wlc_cross(), wlc_vol(), wlc_phi_l2(), wlc_nphi(), wlc_dphib(),

5.2. wlcsim Fortran Codebase Structure 31

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

wlc_attempts(), wlc_up(), wlc_crosssize(), wlc_ncrossp(), wlc_r(),
wlc_success(), wlc_rp(), wlc_meth(), wlc_dphia(), wlc_phib(),
printenergies(), wlcsim_params(), wlc_phia(), int_min(), nan(),
wlc_nbend(), wlc_npointsmoved(), pack_as_para(), nmovetypes(),
wlc_pointsmoved(), wlc_bendpoints(), wlcsim_params_recenter(),
wlc_lk0(), wlc_lk(), wlc_tw(), wlc_wr(), wlc_vp(), wlc_u(),
wlc_v(), wlc_r_gjk(), wlc_nucleosomewrap(), wlc_basepairs(),
wlc_basepairs_prop()), energies, umbrella (umbrella_energy()),
mersenne_twister, binning (addbead(), removebead()), update_ru
(update_r()), polydispersity (length_of_chain(), chain_id(),
leftmost_from()), linkingnumber (get_del_tw_wr_lk())

Called from wlcsim_bruno(), wlcsim_bruno_looping_events(),
wlcsim_bruno_mc(), worker_node(), onlynode()

Call to list_confinement(), set_all_denergy_to_zero(), mc_move(),
mc_cylinder(), mc_sterics(), mc_internucleosome(),
check_rp_for_nan(), alexanderp_crank(), length_of_chain(),
chain_id(), alexanderp_slide(), alexanderp(), mc_eelas(),
mc_global_twist(), mc_bind(), pack_as_para(), de_self_crank(),
energy_self_slide(), mc_int_chem(), mc_int_rep(),
mc_int_super_rep(), mc_int_update(), mc_external_field(),
mc_2bead_potential(), mc_explicit_binding(), umbrella_energy(),
get_del_tw_wr_lk(), apply_energy_ison(), calc_all_de_from_dx(),
sum_all_denergies(), accept_all_energies(), stop_if_err(),
update_r(), printenergies(), leftmost_from(), mc_adapt(),
wlcsim_params_recenter()

mcsim.f03 calls different subroutines that define possible Monte Carlo moves (like MC_reptationMove.f03) and then
checks for whether the move should succeed by summing the various energies that are turned on (like mc_wlc.f90).
Diagrams describing a few of the moves are provided here:

32 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

MC_wlc

Paramters of moves are optimized over time by adapt.f90.

5.2. wlcsim Fortran Codebase Structure 33

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Subroutines and functions

subroutine mc_adapt(wlc_p, mctype)
values from wlcsim_data

Parameters

• wlc_p [wlcsim_params,in]

• mctype [integer,in] :: Type of move

Use params

Called from mcsim()

5.3 Fortran Simulation Features

5.3.1 Semiflexable polymers

The feature that wlcsim was originally designed around and for which it is named is it’s ability to quickly and accu-
rately simulation polymers with stiffness ranging from quite rigid to very flexible.

For very stiff polymers, the usual wormlike chain is simulated.

For relatively more flexible polymers, the “stretchable, shearable” chain is used.

For VERY stretchable polymers, a purely Gaussian chain is used.

Of these, the middle strategy is where this code base stands out. The “stretchable, shearable wormlike chain” is
described in “Discretizing elastic chains for coarse-grained polymer models” by E. F. Koslover and A. J. Spakowitz
(2013). This model allows for quick but still accurate simulation of polymer statistics of semiflexible polymers of a
wide range of stiffnesses (i.e. persistence lengths).

The effective potential for the stretchable, searable wormlike chain is given in terms of constants. The bending mod-
ulus, the stretch modulus, the shear modulus, the bend-shear coupling, and the ground state segment length. These
constants are tabulated for different descritizations in input/dssWLCparams. The module MC_wlc handles interpolat-
ing from this table and calculating the potential between two beads. See MC_wlc.

5.3.2 Field theoretic interactions

Monte-Carlo simulations of solutions and melts of polymers are greatly accelerated by the use of a field-theoretic,
binned-density approach for calculating interbead interactions. This approach is described in “Theoretically informed
coarse grain simulations of polymeric systems.” by Pike et. al. (2009). With a further description of our implementa-
tion given in “Field-theoretic simulations of random copolymers with structural rigidity” by Mao et. al. (2017).

Under this approach the local volume fraction of each constituent is calculated for each of a grid of bins. The code for
calculating the volume fractions and updating them after a Monte-Carlo move are

Subroutines and functions

subroutine mc_int_intitialize(wlc_p)
This subroutine calculates the field energy from scratch based on the positions and types of the beads as de-
scribed in the hamiltonian. This subroutine also sets the value fractions PhiA and PhiB to 0 and sets x_chi.
Volume fractions are linearly interpolated between bins.

Parameters wlc_p [wlcsim_params,in]

34 Chapter 5. Disclaimer

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.013304

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Use params (dp(), wlcsim_params()), energies (energyof(), maiersaupe_())

Called from calculate_energies_from_scratch()

Call to y2_calc(), interp(), hamiltonian(), calc_dphi()

subroutine mc_int_update(wlc_p)
This subroutine calculates the change in the field energy after a Monte Carlo move. Calculation only performed
for bins containing moved (or changed) beads.

Parameters wlc_p [wlcsim_params,in]

Use params (wlcsim_params())

Called from mcsim()

Call to calc_dphi(), hamiltonian()

subroutine calc_dphi(wlc_p, ib)
This subroutine calculated the change in volume fraction in various bins assocated with the motion of bead IB.
The old positon is taken from wlc_R while the new position is taken from wlc_RP.

Developer Note: This subroutine assumes you have set wlc_bin_in_list=FALSE some time before the start of
the move.

Parameters

• wlc_p [wlcsim_params,in] :: data structure

• ib [integer,in] :: Index of moved bead

Use params (dp(), wlcsim_params()), energies (energyof(), maiersaupe_())

Called from mc_int_intitialize(), mc_int_update()

Call to interp(), y2_calc()

The process of calculating the change in volume fractions after a move is often the computational bottle-neck in the
simulation. Routines for doing this that are optimized for different move types are documented here other_int_fun.

The density is interpolated linearly between bins as described by Pike. This interpolation is performed in

Subroutines and functions

subroutine interp(wlc_p, rbin, ix, iy, iz, wx, wy, wz)
This program linearly interpolates a bead at RBin into 8 bins indexed by IX, IY, IZ with weights WX, WY, WZ.
Interpolation is based on Pike (2009), “Theoretically informed coarse grain simulation of polymeric systems”.

For exampe a if a bead is closer to the center of IX(1) then IX(2) then WX(1) will be proportionally higher then
WX(2). The total weight in any of the eight bins is given by WX*WY*WZ.

Parameters

• wlc_p [wlcsim_params,in] :: system varibles

• rbin (3) [real,inout] :: position of bead

• ix (2) [integer,out] :: Range of bins in x direction

• iy (2) [integer,out] :: Range of bins in y direction

• iz (2) [integer,out] :: Range of bins in z direction

• wx (2) [real,out] :: WX(1) = (IX(2)*WLC_P__DBIN-RBin(1))/(IX(2)*WLC_P__DBIN-
IX(1)*WLC_P__DBIN)

5.3. Fortran Simulation Features 35

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

• wy (2) [real,out] :: WY(1) = (IY(2)*WLC_P__DBIN-RBin(2))/(IY(2)*WLC_P__DBIN-
IY(1)*WLC_P__DBIN)

• wz (2) [real,out] :: Fractional contributions in z

Use params (dp(), wlcsim_params())

Called from mc_int_intitialize(), calc_dphi(), mc_int_chem(),
mc_int_rep(), mc_int_super_rep(), mc_int_swap()

To run a simulation with the field theoretic interaction turned on set WLC_P__FIELD_INT_ON to true. You will also
need to specify the relevant interaction parameters to your problem, for example WLC_P__CHI. The details of the
interaction depend on problem (i.e. WLC_P__FIELDINTERACTIONTYPE). What each of these interactions are (or
to add your own) see src/mc/mc_hamiltonain.f03.

Subroutines and functions

subroutine hamiltonian(wlc_p, initialize)

This subroutine calculates the field energy (Hamiltonian) based on volume fractions phi_A and
phi_B. The expresion used to calculate the energy is different for different systems. The setting
WLC_P__FIELDINTERACTIONTYPE determines which expression to use.

If initialize is true then the energy for all bins is calculated. Otherwise calculate only for bins specified
by wlc_inDPHI.

Parameters

• wlc_p [wlcsim_params,inout] :: data

• initialize [logical,in] :: Need to do all beads?

Use params (dp(), wlcsim_params()), energies (energyof(), chi_(),
couple_(), kap_(), field_(), maiersaupe_())

Called from mc_int_intitialize(), mc_int_update(), mc_int_chem(),
mc_int_rep(), mc_int_super_rep(), mc_int_swap()

If you edit this file be sure to edit both the initial calculation of volume fraction and change in volume fraction options.

As a final note, for liquid crystal systems the simulation has additional volume fraction fields that are turned on by
WLC_P__CHI_L2_ABLE. There are five such fields and they correspond to the m values for sphericals harmonics of
l=2 between -2 and 2.

5.3.3 Nucleosome geometry

For simulations of chromatin that require the geometry of nucleosomes to determine the entry exit angles of the DNA
linkers the module nucleosome has the details.

nucleosome

5.3.4 Streamlined Energy Components

The are many different energy contributions. To keep track of these (or to add more) you should look to the energies
module.

energies

36 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

5.4 Fortran Simulation Output

5.4.1 Bead positions and identity

Periodically while running the simulation will take a save point and save the configuration of the polymer(s). These
are saved in the data/ folder in files such as data/r100 where the number 100 denotes what savepoint it is. When
using MPI to parallel temper, the data will be saved in the format data/r110v6 where 100 refers to the save point and 6
refers to the replica. This data will have three columns for the x, y, and z positions of each bead. If there are multiple
polymers they will be printed one after the next with no delineation.

If WLC_P__SAVEAB is specified as true than data/r100v6 will contain a fourth column specifying the bead type.
For two tail methylation profiles a value of 0 in this column refers to either tail bound by HP1, a value of 1 or
2 refers to one or the other tail bound by HP1, while a value of 3 refers to both tails being bound by HP1. If
WLC_P__CHANGINGCHEMICALIDENTITY is true than a fifth column will specify the number of methylated tails
(0, 1 or 2).

For example

21.702 39.628 14.415 0 0
21.715 39.617 14.892 3 1
21.205 39.449 14.758 3 2
20.718 39.472 14.672 3 2
20.463 39.763 14.803 0 0
20.209 39.667 15.418 1 0
19.888 39.643 14.826 2 0
...

5.4.2 Other files

If WLC_P__SAVEU is true then the orientation unit vectors for each bead will be stored as in files of a similar format
to the positions. For example data/u100 or data/u100v6. If WLC_P__LOCAL_TWIST is also true then there will be
three additional columns in the data/u100.

The file data/energiesv6 contains the various energies and corresponding coefficients. All energies are in kT’s. There
is one line in this file per savepoint. The file data/adaptationsv6 contains the adapted window size, success rate, and
so on the various move types. These files are useful for diagnosing problems and determining if the simulation is
equilibrated.

A file data/repHistory contains various information about replica coupling if it is in use.

5.4.3 Visualization

We provide visualization code based on pymol. To run, navigate to ‘visualization/polymer_mole’, enter the savepoint
and other settings into run_visualization.py and then type python3 run_visualization.py. This will require both python3
and pymol. The way it works is that the output described above is converted into a pdb file which is then passed to
pymol. Various sets of settings that have been used in the past are included in run_visualization.py. To use one of thes
set image to the name of the corrisponing set.

If closePymol is set to true in run_visualization than the output will be saved to the data/ directiory. By editing the
line for rep in . . . you can save many snapshots.

5.4. Fortran Simulation Output 37

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

5.5 About Parallel Tempering

This code is set up to allow parallel tempering over multiple variables if desired. The replicas will be along a path in
parameter space parameterized by s which goes between 0 and WLC_P__INITIAL_MAX_S.

To determine which variables will be parallel tempered over set the corresponding switches. For example, to par-
allel temper over chi set WLC_P__PT_CHI to true. By default, the path is set to linearly go between 0 and
WLC_P__CHI in this case. However, you can define a different path in the function cof_path_by_energy_type in
the file src/wlcsim/wlcsim_quinn. For example, MU starts from -2.5 rather than zero.

5.5.1 How to run with parallel tempering

1. Install MPI fortran if not already installed.

2. In defines file, set WLC_P__PTON=.TRUE., set the variable(s) you want to temper over, and set
WLC_P__CODENAME=”quinn”.

3. In file Makefile set ‘FC=mpifort‘

4. Compile using make.

5. Run using mpirun -np 16. This will run with 15 replicas and 1 head node. You may need to provide the path to
mpirun on your computer, mine is located at usr/bin/mpirun.

5.5.2 Adjustable spacing

By default, replicas are spaced evenly between 0 and the maximum value. You can adjust the spacing by writing a
more complicated function into cof_path_by_energy_type‘ in the file src/wlcsim/wlcsim_quinn. There is a built in way
to adjust the spacing of the replicas to achieve an acceptable exchange rate between sequential replicas. To do this set
WLC_P__INDSTARTREPADAT, and WLC_P__INDENDREPADAPT to the save point range during which you would
like the adaptation to occur. For more details see the file src/mc/adaptCof.

5.5.3 Structure of code

The code preforms the following sequence of events

1- The head_node calculates starting coefficient values and sends them to the workers.

2- The worker_node runs start_worker.

3- The worker_node runs Monte Carlo moves with mcsim.

4- The worker_node call replicaExchange to return values to the head_node.

5- The head_node attempts a replica exchange.

6- The head_node return new coefficient values to the worker via replicaExchange

7- Return to step 3 and repeat.

subroutine head_node(process)
Head node for multiple thread parallel tempering using MPI. Sends worker threads their coefficients, receives x
back, then attempts replica swap move.

Parameters process [integer,in] :: number of therads

Use params, mersenne_twister, mpi, energies

Called from wlcsim_quinn()

38 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Call to cof_path_by_energy_type(), save_rephistory(), adapt_cof()

subroutine worker_node(wlc_p)
Worker node for MPI parallel tempering. Recieves Coefficients from head node, runs many Monte-Carlo steps,
then returns x values to head node.

Parameters wlc_p [wlcsim_params,inout]

Use params, energies (energyof(), number_of_energy_types()), mpi,
mersenne_twister

Called from wlcsim_quinn()

Call to stop_if_err(), startworker(), schedule(),
calculate_energies_from_scratch(), verify_energies_from_scratch(),
mcsim(), replicaexchange()

Subroutines and functions

subroutine startworker()
Start worker node.

Use params, mpi, energies (number_of_energy_types(), energyof())

Called from worker_node()

subroutine replicaexchange()
This checks in with the mpi head node to For parallel tempering of the form: E = cof*x 1: Tell head node the x
value 2: Recive replica assignment from head node 3: Recive assigned cof value

Use params (dp(), maxfilenamelen(), epsapprox()), mpi, energies
(number_of_energy_types(), energyof())

Called from worker_node()

5.6 Tips

This page contains usefull tips that we have found usefull for using this codebase. These may be helpful for your
workflow.

5.6.1 Running Remotely

When running wlcsim remotely you may want to use tmux so that you don’t get logged off while wlcsim is running.
More documentation on this comming shortly.

5.6.2 The defines.inc file

You will likely end up with many different defines.inc files. Generally I keep a few examples around in in-
put/exampledefines. One of the best tools for comparing defines files is vim -d defines.inc path/other_defines.inc.
Look up vim diff online for more shortcuts when using this, they are really helpfull.

Each setting comes with a description. But you will likely run into cases where the description isn’t enough. Because
the settings are named with uinque strings, it is easy to grep the code base for them. For example:

grep -r “WLC_P__WHATEVERSETTING” src/

5.6. Tips 39

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

5.6.3 Running / storing simulations

Genearally I coppy the entire code base around when I want to run it again with different settings. The code is small
compaired to the output so this donesn’t really take up much extra space. I recompile every time I run with make
clean. Since compiling wlcsim is fast compaired to running you might as well.

5.6.4 Compiling options

When debugging you likely want to run with FCFLAGS = ${PEDANTICFLAGS} in Makefile. When running long
simulations you likely want to switch to FCFLAGS = ${FASTFLAGS}. Be sure to make clean after changing this
setting.

5.6.5 Trouble Shooting

When running Monte Carlo many different runtime errors will lead to the integrated energy differing from the energy
when it is calculated again from scratch. You’ll want to moniter the error output for this warning. This check is one
of the best features of this codebase when it comes to code testing, trust us you want it! Here are some tips for if this
should occure:

• Turn off some moves and not others. If the error only occures on some subset that can be informative.

• Are the energies really big? This may have tripped this error. You likely don’t acctually want them to be that
big.

• Which energy type is not matching? Are there multiple that arn’t matching.

If the text in the error message appears to be refering to text that isn’t actually there.

• The text may have been replaced by the precomilier to the values givin in src/defines.inc. This probably means
there’s an error with one of your settings.

5.7 Meiotic Homolog Pairing

In collaboration with the Burgess lab at UC Davis, we are interested in simulating chromosomes diffusing in a budding
yeast nucleus in order to compare to their single-particle tracking data of homologous (and heterologous) loci diffusing
in early meiosis I.

We don’t have concrete measurements of the viscoelasticity of these nuclei, we will assume they are water-like (i.e.
𝛼 = 1 in a fractional Langevin model of polymer diffusion). And since we are interested in large-scale motion (frame
rate in our real movies is already 30s), we can simply use the Rouse model for the behavior of each chromosome.

5.7.1 Testing Code

The :mod:wlcsim.bd.rouse module was originally written by Bruno Beltran to replace Andrew Spakowitz/Steph
Weber/Elena Koslover’s FORTRAN77 Brownian dynamics codebase for fractional ssWLC simulation. We want to do
some tests so make sure that the new code behaves as expected in all limiting cases with known behavior.

Rouse behavior

The simulations should reproduce the Gaussian statistics associated with a Rouse polymer with the given parameters.

40 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

This includes an MSD that scales like ⎧⎪⎨⎪⎩
6𝐷(𝑁/�̂�)𝑡

1.9544100𝑏
√
𝐷𝑡

6(𝐷/�̂�)𝑡

and Gaussian inter-bead distributions with mean spacing 𝐿0𝑏.

In order to see this behavior, we turn off the confinement by setting the strength of the confinement force Aex to 0,
and do not tether any beads to the confinement nor pair any loci together

[134]: import numpy as np
import wlcsim
from wlcsim.bd import rouse, homolog
N = int(1e2+1); L = 17.475; R = 1; b = 0.015; D = 2e1 # ChrV
dt = rouse.recommended_dt(N, L, b, D)
Aex = 0; # no confinement
N_tot, loop_list = homolog.points_to_loops_list(N, []) # no loops
tether_list = np.array([]).astype(int) # no tethered loci

The following derived parameters are explained in the docs for :mod:wlcsim.bd.rouse.

[135]: Nhat = L/b; L0 = L/(N-1); Dhat = D*N/Nhat; bhat = np.sqrt(L0*b)

Saving all 1e6 time steps doesn’t take up THAT much memory, but calculating the taMSD (a O(N^2) operation) for
that many time points is prohibitive.

We use bnp.loglinsample to save sets of equispaced time points (in chunks of length Nlin) that cover all time
scales of our simulation. Nlin is chosen to be small enough that O(Nlin^2) is not too big.

You can think of loglinsample as returning a bunch of separate arrays

1) `np.arange(0, dt*Nlin, dt)`
2) `np.arange(0, dt*Nlin**2, Nlin*dt)`
3) ...
4) `np.linspace(0, Nt*dt, Nlin)`

we will compute the MSD using the equally-spaced points in each of these arrays, then recombine that into a single
curve below.

[136]: Nt = 1e6; # total number of equi-space time steps
Nlin = 1e4; # see docstring of loglinsample
t = np.arange(0, Nt*dt, dt) # take Nt time steps
from bruno_util import numpy as bnp
t_i, i_i = bnp.loglinsample(Nt, Nlin, 0.6)
t_save = t[t_i]

[137]: i_i = [np.round(i).astype(int) for i in i_i] # numba workaround

Simulate for long enough to see the cross-over into the :math:t^{1/2} regime. (This simulation takes about 4min
on my laptop).

[139]: # run actual simulation
x = homolog._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R, R,
→˓R, t, t_save)

Post-processing simulation a score or so seconds per _get_bead_msd call (time averaged MSD calculation is
expensive)

5.7. Meiotic Homolog Pairing 41

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

[140]: import wlcsim.bd.runge_kutta
sim_ts = []
sim_msds = []
for i in i_i:

sim_ts.append(t_save[i])
extract msd of 51st (of 101) bead from simulation
m, c = wlcsim.bd.runge_kutta._get_bead_msd(x[i], 51)
sim_msds.append(m/c)

First plot the MSD curves separately, to demonstrate that the clever time-point choice worked correctly

[141]: for t, msd in zip(sim_ts, sim_msds):
plt.plot(t[1:], msd[1:])

plt.yscale('log'); plt.xscale('log')

now combine them altogether (this is what you would normally do)

[142]: sim_msd = np.zeros_like(t_save)
for each set of equi-spaced time points we used
for i in i_i:

extract msd of 51st (of 101) bead from simulation
m, c = wlcsim.bd.runge_kutta._get_bead_msd(x[i], 51)
recombine into single array, overwriting values computed from
more tightly-space points with those from less tightly-spaced
sim_msd[i[1:]] = m[1:]/c[1:]

compare MSD curves to analytical result (by truncating/choosing a finite number of modes matching N/2 beads, we
recover the exact analytical theory for a finite rouse chain from that of the infinite chain)

[143]: import matplotlib.pyplot as plt
exclude t=0 to make log/log msd look good
plt.plot(t_save[1:], 6*D*(N/Nhat)*t_save[1:], label='Short-time behavior')
plt.plot(t_save[1:], 1.9544100*b*np.sqrt(D*t_save[1:]), label='Rouse-like behavior')
plt.plot(t_save[1:], 6*D*t_save[1:]/Nhat, label='Long-time behavior')
plt.plot(t_save[1:], wlcsim.analytical.rouse.rouse_mid_msd(t_save[1:],

b, Nhat, D, num_modes=int(N/2)), 'k', label='Analytical MSD')

(continues on next page)

42 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

(continued from previous page)

plt.plot(t_save[1:], sim_msd[1:], 'r', label='Simulation MSD', lw=2)

plt.yscale('log'); plt.xscale('log');
plt.legend()

[143]: <matplotlib.legend.Legend at 0x7f3f22d66b50>

Ornstein-Uhlenbeck test

Two-bead chains can be well understood as an Ornstein-Uhlenbeck process in the coordinates of one of the beads. The
position autocorrelation of the second bed should be an exponential

⟨𝑥𝑠 − 𝑥0, 𝑥𝑡 − 𝑥0⟩ =
𝑘𝐵𝑇

𝑘
exp (−𝑘|𝑡|/𝜉)

[3]: N = 2; L = 3; R = 1000; b = 1; D = 5 # two O-U processes
dt = rouse.recommended_dt(N, L, b, D)
Aex = 0; # no confinement
N_tot, loop_list = rouse.homolog_points_to_loops_list(N, []) # no loops
tether_list = np.array([]).astype(int) # no tethered loci

we run 100 copies of the process, to get better stats (so 200 total 3D O-U processes, since each simulation has two
“homologs”)

[4]: Nt = 1e4;
t = np.arange(0, Nt*dt, dt) # take Nt time steps
X = []
for i in range(100):

x = rouse._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R,
→˓R, R, t, t)

X.append(np.stack([x[:,1,:] - x[:,0,:], x[:,3,:] - x[:,2,:]]))
X = np.concatenate(X, axis=0)

[7]: X.shape # (num_samples, num_t, d)

[7]: (200, 10000, 3)

5.7. Meiotic Homolog Pairing 43

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

[6]: # abuse get_bead_msd, which expects X.shape == (num_t, num_beads, d)
to get one of the sample's MSDs by pretending its a "bead"
sim_msd, count = wlcsim.bd.runge_kutta._get_bead_msd(np.transpose(X, [1, 0, 2]), 1)

[8]: plt.plot(t[1:], sim_msd[1:]/count[1:], 'k')
plt.yscale('log'); plt.xscale('log')

[9]: corr, count = wlcsim.bd.runge_kutta._get_vector_corr(X)

[25]: Nhat = L/b; L0 = L/(N-1); Dhat = D*N/Nhat; bhat = np.sqrt(L0*b)
plt.plot(t, corr/count, 'kx')
kbT_over_k = 3*bhat**2/3 # bhat**2/3 per dimension
k_over_xi = 3*(2*Dhat)/bhat**2 # extra (2*Dhat) because it's two beads tethered, not
→˓one tether to origin
plt.plot(t, kbT_over_k * np.exp(-k_over_xi*t), 'b')
plt.yscale('log')
plt.xlim([0, 1.5])
plt.ylim([1e-4, 1e1])

[25]: (0.0001, 10.0)

44 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

Confinement

As seen above, if the confinement size is made “weak enough”, the simulation behaves as it should in the absense of a
confinement.

The MSD should plateau at the radius of the confinement.

[29]: N = int(1e2+1); L = 17.475; R = 1.000; b = 0.015; D = 2e1 # ChrV
dt = rouse.recommended_dt(N, L, b, D)
Aex = 100; # multiplier on confinement force
N_tot, loop_list = rouse.homolog_points_to_loops_list(N, []) # no loops
tether_list = np.array([]).astype(int) # no tethered loci

[35]: Nt = 1e8; Nt_save = 1e4;
t = np.arange(0, Nt*dt, dt) # take Nt time steps
t_save = t[::int(Nt/Nt_save)] # save only a subsample
run actual simulation
x = rouse._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R, R, R,
→˓ t, t_save)

[36]: # extract msd of 51st (of 101) bead from simulation
sim_msd, count = wlcsim.bd.runge_kutta._get_bead_msd(x, 51)

[37]: Nhat = L/b; L0 = L/(N-1); Dhat = D*N/Nhat; bhat = np.sqrt(L0*b)
exclude t=0 to make log/log msd look good
plt.plot(t_save[1:], 6*D*(N/Nhat)*t_save[1:], label='Short-time behavior')
plt.plot(t_save[1:], 1.9544100*b*np.sqrt(D*t_save[1:]), label='Rouse-like behavior')
plt.plot(t_save[1:], 6*D*t_save[1:]/Nhat, label='Long-time behavior')
plt.plot(t_save[1:], sim_msd[1:]/count[1:], 'r', label='Simulation MSD')
plt.plot(t_save[1:], wlcsim.analytical.rouse.rouse_mid_msd(t_save[1:],

b, Nhat, D, num_modes=int(N/2)), 'k', label='Analytical MSD')
plt.yscale('log'); plt.xscale('log');
plt.legend()

[37]: <matplotlib.legend.Legend at 0x7f0ac12c9710>

Beads that are “tethered” to the confinement should be preferentially “close” to it compared to the rest of the beads in
the simulation.

5.7. Meiotic Homolog Pairing 45

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

[51]: N = int(1e2+1); L = 17.475; R = 1.000; b = 0.015; D = 2e1 # ChrV
dt = rouse.recommended_dt(N, L, b, D)
Aex = 100; # multiplier on confinement force
N_tot, loop_list = rouse.homolog_points_to_loops_list(N, []) # no loops
tether_list = np.array([0, 51, 100]).astype(int) # tethered telomeres and centromere

[52]: %%debug
Nt = 1e6; Nt_save = 1e4;
t = np.arange(0, Nt*dt, dt) # take Nt time steps
t_save = t[::int(Nt/Nt_save)] # save only a subsample
run actual simulation
x = rouse._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R, R, R,
→˓ t, t_save)

NOTE: Enter 'c' at the ipdb> prompt to continue execution.
> <string>(2)<module>()

ipdb> s
> <string>(3)<module>()

ipdb> s
> <string>(4)<module>()

ipdb>
> <string>(6)<module>()

ipdb>
--Call--
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(521)typeof_
→˓pyval()

519 return "%s(%s)" % (type(self).__name__, self.py_func)
520

--> 521 def typeof_pyval(self, val):
522 """
523 Resolve the Numba type of Python value *val*.

ipdb> n
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(529)typeof_
→˓pyval()

527 # Not going through the resolve_argument_type() indirection
528 # can save a couple µs.

--> 529 try:
530 tp = typeof(val, Purpose.argument)
531 except ValueError:

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(530)typeof_
→˓pyval()

528 # can save a couple µs.
529 try:

--> 530 tp = typeof(val, Purpose.argument)
531 except ValueError:
532 tp = types.pyobject

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(534)typeof_
→˓pyval()

(continues on next page)

46 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

(continued from previous page)

532 tp = types.pyobject
533 else:

--> 534 if tp is None:
535 tp = types.pyobject
536 return tp

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(536)typeof_
→˓pyval()

534 if tp is None:
535 tp = types.pyobject

--> 536 return tp
537
538

ipdb>
--Return--
array(float64, 1d, A)
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(536)typeof_
→˓pyval()

534 if tp is None:
535 tp = types.pyobject

--> 536 return tp
537
538

ipdb>
--Call--
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(325)_
→˓compile_for_args()

323 return self._compiling_counter
324

--> 325 def _compile_for_args(self, *args, **kws):
326 """
327 For internal use. Compile a specialized version of the function

ipdb> s
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(330)_
→˓compile_for_args()

328 for the given *args* and *kws*, and return the resulting callable.
329 """

--> 330 assert not kws
331
332 def error_rewrite(e, issue_type):

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(332)_
→˓compile_for_args()

330 assert not kws
331

--> 332 def error_rewrite(e, issue_type):
333 """
334 Rewrite and raise Exception `e` with help supplied based on the

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(345)_
→˓compile_for_args()

(continues on next page)

5.7. Meiotic Homolog Pairing 47

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

(continued from previous page)

343 reraise(type(e), e, None)
344

--> 345 argtypes = []
346 for a in args:
347 if isinstance(a, OmittedArg):

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(346)_
→˓compile_for_args()

344
345 argtypes = []

--> 346 for a in args:
347 if isinstance(a, OmittedArg):
348 argtypes.append(types.Omitted(a.value))

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(347)_
→˓compile_for_args()

345 argtypes = []
346 for a in args:

--> 347 if isinstance(a, OmittedArg):
348 argtypes.append(types.Omitted(a.value))
349 else:

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(350)_
→˓compile_for_args()

348 argtypes.append(types.Omitted(a.value))
349 else:

--> 350 argtypes.append(self.typeof_pyval(a))
351 try:
352 return self.compile(tuple(argtypes))

ipdb>
--Call--
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(521)typeof_
→˓pyval()

519 return "%s(%s)" % (type(self).__name__, self.py_func)
520

--> 521 def typeof_pyval(self, val):
522 """
523 Resolve the Numba type of Python value *val*.

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(529)typeof_
→˓pyval()

527 # Not going through the resolve_argument_type() indirection
528 # can save a couple µs.

--> 529 try:
530 tp = typeof(val, Purpose.argument)
531 except ValueError:

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/dispatcher.py(530)typeof_
→˓pyval()

528 # can save a couple µs.
529 try:

(continues on next page)

48 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

(continued from previous page)

--> 530 tp = typeof(val, Purpose.argument)
531 except ValueError:
532 tp = types.pyobject

ipdb>
--Call--
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/typing/typeof.
→˓py(24)typeof()

22 _TypeofContext = namedtuple("_TypeofContext", ("purpose",))
23

---> 24 def typeof(val, purpose=Purpose.argument):
25 """
26 Get the Numba type of a Python value for the given purpose.

ipdb>
> /home/bbeltr1/.miniconda/lib/python3.7/site-packages/numba/typing/typeof.
→˓py(29)typeof()

27 """
28 # Note the behaviour for Purpose.argument must match _typeof.c.

---> 29 c = _TypeofContext(purpose)
30 ty = typeof_impl(val, c)
31 if ty is None:

ipdb> exit

[42]: %matplotlib qt5

[43]: hv = rouse.HomologViewer(x, N, loop_list)

Connectivity

If we make the only paired bead be one of the end beads, then the polymers should behave as one long linear polymer.

[]: N = int(1e2+1); L = 17.475; R = 1.000; b = 0.015; D = 2e1 # ChrV
dt = rouse.recommended_dt(N, L, b, D)
Aex = 0; # no confinement
N_tot, loop_list = rouse.homolog_points_to_loops_list(N, [0]) # only one end tethered
tether_list = np.array([]).astype(int) # no tethered loci

[]: x = rouse._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R, R, R,
→˓ t, t_save)

The above was verified to work visually using

[]: %matplotlib qt5
hv = rouse.HomologViewer(x, int(N), loop_list)

If we make both end beads be homologously paired, then the two polymers should behave as one larger ring polymer.

[]: N = int(1e2+1); L = 17.475; R = 1.000; b = 0.015; D = 2e1 # ChrV
dt = rouse.recommended_dt(N, L, b, D)
Aex = 0; # no confinement

(continues on next page)

5.7. Meiotic Homolog Pairing 49

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

(continued from previous page)

N_tot, loop_list = rouse.homolog_points_to_loops_list(N, [0, 100]) # only one end
→˓tethered
tether_list = np.array([]).astype(int) # no tethered loci

[]: x = rouse._jit_rouse_homologs(N, N_tot, tether_list, loop_list, L, b, D, Aex, R, R, R,
→˓ t, t_save)

The above was verified to work visually using

[]: %matplotlib qt5
hv = rouse.HomologViewer(x, int(N), loop_list)

5.7.2 Generating Pairing Sites

Our simulation as written is purely Brownian Dynamics, (no Gillespie component). This means that we treat the
“existing” homolog paired sites as fixed and ask how the polymer fluctuates assuming no new connections are formed.

Thus, our method for choosing which sites are “paired” in a given simulation will greatly affect our results.

By default, all of our simulations will simply choose pairing sites uniformly according to some density FP. That is,
each individual bead will have a probability 0 ≤ FP ≤ 1 of being paired.

However, we present below an alternative strategy for choosing these sites, that involves explicitly simulating the
dynamic process of homolog pairing.

𝑘ℎ ≪ 𝑘loop

In the limit as the rate of polymer loop formation eclipses the rate of stable homolog junction formation (i.e. if it
requires many “kissing” events to form a stable homolog junction), then we can treat the homolog pairing process
approximately as a Markov chain where the transition rates from a given loci being unpaired to paired simply are
proportional to the looping probabilities for the ring polymer defined by its nearest neighbors (where there already
exists a junction) to the left and right.

No Unpairing

In the case 𝑘ℎ ≪ 𝑘loop and where we don’t allow unpairing events to occur, we can actually analytically compute the
final loop size distribution.

[1]: #TODO copy from notes to here

[]:

5.7.3 Simulations

Simulate two rouse chains in confinement, various connectivities.

The ura3 gene is on ChrV, spanning bases 116167–116970. ChrV is 576874 bases, and budding yeast have a mean
linker length of 15bp (as estimated based on a nucleosome repeat length (NRL) of ~165bp). This corresponds to a
WLC with an effective persistence length of ~15nm in theta-solvent conditions (see Beltran & Kannan et al, PRL
2019). This number has elsewhere been estimated to be as low as 5nm experimentally (Hajjoul et al, Genome Re-
search 2013). Since only 15/165~9% of DNA is in linkers (linear distance along this effective WLC) ChrV’s ~3496

50 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

nucleosomes each cover about one third of a Kuhn length. Meaning the chain can be thought of as being made of 1165
Kuhn lengths of 15nm each (for 17475nm total).

So in 𝜇m, L=17.475, b=0.015, and N=101 is used to give 100 segments of equal length. (which would make the ura3
locus bead 20).

The nucleus has a radius of about a micron, and loci reach the confinement after about a minute. Because their Rouse
diffusion has basically the form 1.9544100* 𝑏*𝐷1/2𝑡1/2, then we can calculate that 12𝜇𝑚2 = 1.95441×0.015𝜇𝑚×
𝐷1/2𝑢𝑚/𝑠1/2 × 601/2𝑠1/2. In other words, 𝐷 ≈ 19.39𝜇𝑚2/𝑠. So R=1.000, D=2e1.

Notice that since the terminal relaxation time of the polymer is 𝑁2𝑏2/𝐷. . .

Assuming that we can treat the maximum attained MSD value as the confinement size, approximately, we can just use
teh MSD at time 30 as a proxy for the confinement size, since it’s basically flat after that.

If we look at the distribution of these values in the data, we see that the squared displacement has a distribution which
is linear

[]: msds = msds.msd(burgess.df_flat, mscd=True, include_z=True, traj_group=burgess.cell_
→˓cols, groups=burgess.cell_cols)
m = sds.reset_index()
data = m[m['delta'] == 30]['mean'].values
data = data[~np.isnan(data)]
Y, X = np.histogram(data)
scipy.stats.linregress(X[3:], Y[2:])

the above gives output of

>>> LinregressResult(slope=-648.6107382252995, intercept=1340.988095238095, rvalue=-0.
→˓9865990280608326, pvalue=5.956260174887604e-06, stderr=43.79162733110961)

if we don’t square the values, we see that we get a peak at around 0.8um, which I guess will be the mean confinement
radius. this is close enough to the current simulation value of ~1um.

If we use t=60, 90, or 120s instead, we still get values around 1um, like 1.02um to 1.12um. . .

5.8 Example plots for Frank Elastic Constants

[1]: from FrankElastic.plot_frank import *

[2]: %matplotlib inline
import os.path as path

5.8.1 Plot correlations

[3]: if not path.exists("FrankElastic/Sdata.p"):
get_data_for_Splot("FrankElastic/Sdata.p", nthreads=25, N=0.05, npts=25)

[4]: plot_S("FrankElastic/Sdata.p")

5.8. Example plots for Frank Elastic Constants 51

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

5.8.2 Plots of Frank elastic constants

[5]: if not path.exists("FrankElastic/highN.p"):
get_Multi_frank_data(saveas="highN.p", gammaN=False, nthreads=25, npts=150,

→˓maxgamma=100)

[6]: if not path.exists("FrankElastic/lowN.p"):
get_Multi_frank_data(saveas="lowN.p", gammaN=True, nthreads=25, npts=48,

→˓maxgamma=35)

[7]: Multi_frank_plot(load="FrankElastic/highN.p")

52 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

[8]: Multi_frank_plot(load="FrankElastic/lowN.p")

/home/users/qmac/combinedCodeBase/wlcsim/wlcsim/FrankElastic/rigidrod.py:119:
→˓RuntimeWarning: invalid value encountered in double_scalars
a_prime[ii] = 15*gammas[ii]*eM[0][0,0]/(4*np.sqrt(np.pi)*eM[0][0,2])

5.8. Example plots for Frank Elastic Constants 53

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

54 Chapter 5. Disclaimer

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

[9]: seperate_bend_twist_splay("FrankElastic/highN.p")

[10]: if not path.exists("FrankElastic/Nsweep.p"):
get_Nsweep_data(saveas="FrankElastic/Nsweep.p", nthreads=25)

[11]: plotNsweep("FrankElastic/Nsweep.p")

5.8. Example plots for Frank Elastic Constants 55

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

56 Chapter 5. Disclaimer

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

57

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

58 Chapter 6. Indices and tables

Python Module Index

w
wlcsim, 11
wlcsim.analytical, 21
wlcsim.analytical.fractional, 23
wlcsim.analytical.rouse, 21
wlcsim.bd, 11
wlcsim.bd.forces, 18
wlcsim.bd.homolog, 15
wlcsim.bd.rouse, 11
wlcsim.bd.runge_kutta, 19
wlcsim.bd.tsswlc, 20
wlcsim.FrankElastic.frank, 25
wlcsim.FrankElastic.invlaplace, 28
wlcsim.FrankElastic.plot_frank, 26
wlcsim.FrankElastic.stonefence, 28
wlcsim.FrankElastic.yyyreal, 29
wlcsim.input, 24

59

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

60 Python Module Index

Index

Symbols
_get_bead_msd (in module wlcsim.bd.runge_kutta),

19
_get_scalar_corr (in module wlc-

sim.bd.runge_kutta), 19
_get_vector_corr (in module wlc-

sim.bd.runge_kutta), 19
_jit_rouse_homologs (in module wlc-

sim.bd.homolog), 15
_jit_sswlc_clean() (in module wlcsim.bd.tsswlc),

20
_jit_sswlc_lena() (in module wlcsim.bd.tsswlc),

20

C
calc_dphi() (fortran subroutine), 35
correct_param_name() (in module wlcsim.input),

25
correct_param_value() (in module wlcsim.input),

25

D
decide_input_format() (wlc-

sim.input.ParsedInput method), 24

E
end2end_distance() (in module wlc-

sim.analytical.rouse), 21
end2end_distance_gauss() (in module wlc-

sim.analytical.rouse), 21
end_to_end_corr() (in module wlc-

sim.analytical.rouse), 21

F
f_conf_ellipse (in module wlcsim.bd.forces), 18
f_elas_homolog_rouse (in module wlc-

sim.bd.forces), 18
f_elas_linear_rouse (in module wlc-

sim.bd.forces), 19

f_elas_linear_sswlc (in module wlc-
sim.bd.forces), 19

f_tether_ellipse (in module wlcsim.bd.forces), 19
find_gamma() (in module wlc-

sim.FrankElastic.plot_frank), 26
frac_cv() (in module wlcsim.analytical.fractional),

23
frac_discrete_cv() (in module wlc-

sim.analytical.fractional), 23
frac_discrete_cv_normalized() (in module

wlcsim.analytical.fractional), 23
frac_msd() (in module wlcsim.analytical.fractional),

23
frac_rouse_cvv() (in module wlc-

sim.analytical.fractional), 23
frac_rouse_mid_msd() (in module wlc-

sim.analytical.fractional), 23
frac_rouse_mode_corr() (in module wlc-

sim.analytical.fractional), 23

G
gaussian_G (in module wlcsim.analytical.rouse), 21
gaussian_Ploop (in module wlc-

sim.analytical.rouse), 21
get_a() (in module wlcsim.FrankElastic.frank), 26
get_data_for_Splot() (in module wlc-

sim.FrankElastic.plot_frank), 27
get_first_pole() (in module wlc-

sim.FrankElastic.frank), 26
get_Frank_values() (in module wlc-

sim.FrankElastic.frank), 25
get_Multi_frank_data() (in module wlc-

sim.FrankElastic.plot_frank), 26
get_Nsweep_data() (in module wlc-

sim.FrankElastic.plot_frank), 27
Gmll_matrix (in module wlc-

sim.FrankElastic.stonefence), 28

H
hamiltonian() (fortran subroutine), 36

61

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

head_node() (fortran subroutine), 38

I
ind_sphere() (in module wlc-

sim.FrankElastic.yyyreal), 29
InputFormat (class in wlcsim.input), 24
interp() (fortran subroutine), 35
intYYYnum() (in module wlc-

sim.FrankElastic.yyyreal), 29
invLaplace() (in module wlc-

sim.FrankElastic.invlaplace), 28
invLaplace_path() (in module wlc-

sim.FrankElastic.invlaplace), 28

J
jit_confined_srk1 (in module wlcsim.bd.rouse),

12
jit_confinement_clean (in module wlc-

sim.bd.rouse), 12
jit_srk1 (in module wlcsim.bd.rouse), 12

K
kp_over_kbt (in module wlcsim.analytical.rouse), 21

L
linear_mid_msd (in module wlc-

sim.analytical.rouse), 22
linear_mscd() (in module wlcsim.analytical.rouse),

22

M
main (fortran program), 30
make_path() (in module wlc-

sim.FrankElastic.invlaplace), 28
mc_adapt() (fortran subroutine), 34
mc_int_intitialize() (fortran subroutine), 34
mc_int_update() (fortran subroutine), 35
mcsim() (fortran subroutine), 31
measured_D_to_rouse() (in module wlc-

sim.bd.rouse), 13
Multi_frank_plot() (in module wlc-

sim.FrankElastic.plot_frank), 26
multi_process_fun() (in module wlc-

sim.FrankElastic.plot_frank), 27

O
ou() (in module wlcsim.bd.runge_kutta), 19

P
parse_defines_params_file() (wlc-

sim.input.ParsedInput method), 24
parse_lena_params_file() (wlc-

sim.input.ParsedInput method), 25

parse_original_params_file() (wlc-
sim.input.ParsedInput method), 25

parse_params_file() (wlcsim.input.ParsedInput
method), 25

ParsedInput (class in wlcsim.input), 24
PgammaB_vec (in module wlc-

sim.FrankElastic.stonefence), 29
plot_Frank() (in module wlc-

sim.FrankElastic.plot_frank), 27
plot_S() (in module wlcsim.FrankElastic.plot_frank),

27
plotNsweep() (in module wlc-

sim.FrankElastic.plot_frank), 27
points_to_loops_list() (in module wlc-

sim.bd.homolog), 15
precalculate_data() (in module wlc-

sim.FrankElastic.stonefence), 29

R
recommended_dt() (in module wlcsim.bd.rouse), 14
replicaexchange() (fortran subroutine), 39
ring_mscd() (in module wlcsim.analytical.rouse), 22
rk4_thermal_bruno() (in module wlc-

sim.bd.runge_kutta), 19
rk4_thermal_lena() (in module wlc-

sim.bd.runge_kutta), 20
rouse() (in module wlcsim.bd.homolog), 16
rouse_cv_mid() (in module wlc-

sim.analytical.fractional), 23
rouse_cvv_ep() (in module wlc-

sim.analytical.fractional), 24
rouse_large_cvv_g() (in module wlc-

sim.analytical.rouse), 22
rouse_mode (in module wlcsim.analytical.rouse), 22
rouse_mode_coef (in module wlc-

sim.analytical.rouse), 22
rouse_nondim_() (in module wlc-

sim.analytical.fractional), 24

S
seperate_bend_twist_splay() (in module wlc-

sim.FrankElastic.plot_frank), 28
sim_loc() (in module wlcsim.bd.homolog), 17
split_homolog_x() (in module wlc-

sim.bd.homolog), 18
split_homologs_X() (in module wlc-

sim.bd.homolog), 18
srk1_roberts() (in module wlcsim.bd.runge_kutta),

20
sswlc() (in module wlcsim.bd.tsswlc), 20
startworker() (fortran subroutine), 39

T
tDeltaN() (in module wlcsim.analytical.fractional),

62 Index

wlcsim Documentation, Release 0.1.8+0.g2b5f727.dirty

24
test_Frank_accuracy() (in module wlc-

sim.FrankElastic.frank), 26
test_rouse_msd_line_approx() (in module

wlcsim.analytical.rouse), 22
tR() (in module wlcsim.analytical.fractional), 24

U
un_rouse_nondim() (in module wlc-

sim.analytical.fractional), 24

V
vc() (in module wlcsim.analytical.fractional), 24
vvc_rescaled_theory() (in module wlc-

sim.analytical.fractional), 24
vvc_unscaled_theory() (in module wlc-

sim.analytical.fractional), 24

W
with_integrator() (in module wlcsim.bd.rouse),

14
wlcsim (fortran program), 30
wlcsim (module), 11
wlcsim.analytical (module), 21
wlcsim.analytical.fractional (module), 23
wlcsim.analytical.rouse (module), 21
wlcsim.bd (module), 11
wlcsim.bd.forces (module), 18
wlcsim.bd.homolog (module), 15
wlcsim.bd.rouse (module), 11
wlcsim.bd.runge_kutta (module), 19
wlcsim.bd.tsswlc (module), 20
wlcsim.FrankElastic.frank (module), 25
wlcsim.FrankElastic.invlaplace (module),

28
wlcsim.FrankElastic.plot_frank (module),

26
wlcsim.FrankElastic.stonefence (module),

28
wlcsim.FrankElastic.yyyreal (module), 29
wlcsim.input (module), 24
wlcsim_bruno() (fortran subroutine), 31
wlcsim_quinn() (fortran subroutine), 31
worker_node() (fortran subroutine), 39
write() (wlcsim.input.ParsedInput method), 25

Y
YR() (in module wlcsim.FrankElastic.yyyreal), 29
YYY() (in module wlcsim.FrankElastic.yyyreal), 29
YYY_0mm() (in module wlcsim.FrankElastic.yyyreal),

29
YYY_l1() (in module wlcsim.FrankElastic.yyyreal), 29
YYYreal() (in module wlcsim.FrankElastic.yyyreal),

29

Index 63

	What is wlcsim?
	Setting up a Fortran simulation
	Running the Fortran code
	Output
	Disclaimer
	wlcsim Python Module
	wlcsim Fortran Codebase Structure
	Fortran Simulation Features
	Fortran Simulation Output
	About Parallel Tempering
	Tips
	Meiotic Homolog Pairing
	Example plots for Frank Elastic Constants

	Indices and tables
	Python Module Index
	Index

